Spaces:
Running
Running
import json | |
from sentence_transformers import SentenceTransformer, util | |
from groq import Groq | |
from datetime import datetime | |
import requests | |
from io import BytesIO | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
from dotenv import load_dotenv | |
import os | |
from datasets import load_dataset, Dataset, DatasetDict | |
import pandas as pd | |
# Load environment variables | |
load_dotenv() | |
# Initialize Groq client | |
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
# Load models and dataset | |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
# Configuration | |
HF_DATASET_REPO = "midrees2806/unmatched_queries" # Your dataset repo | |
HF_TOKEN = os.getenv("HF_TOKEN") # From Space secrets | |
# Greeting words list | |
GREETINGS = [ | |
"hi", "hello", "hey", "good morning", "good afternoon", "good evening", | |
"assalam o alaikum", "salam", "namaste", "hola", "bonjour", "hi there", | |
"hey there", "greetings", "howdy" | |
] | |
# --- Dataset Loading --- | |
try: | |
with open('dataset.json', 'r') as f: | |
dataset = json.load(f) | |
if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset): | |
raise ValueError("Invalid dataset structure") | |
except Exception as e: | |
print(f"Error loading dataset: {e}") | |
dataset = [] | |
# Precompute embeddings | |
dataset_questions = [item.get("input", "").lower().strip() for item in dataset] | |
dataset_answers = [item.get("response", "") for item in dataset] | |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True) | |
# --- Unmatched Queries Handler --- | |
def manage_unmatched_queries(query: str): | |
"""Save unmatched queries to HF Dataset with error handling""" | |
try: | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Load existing dataset or create new | |
try: | |
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN) | |
df = ds["train"].to_pandas() | |
except: | |
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"]) | |
# Append new query (avoid duplicates) | |
if query not in df["Query"].values: | |
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False} | |
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True) | |
# Push to Hub | |
updated_ds = Dataset.from_pandas(df) | |
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN) | |
except Exception as e: | |
print(f"Failed to save query: {e}") | |
# --- Enhanced LLM Query --- | |
def query_groq_llm(prompt, model_name="llama3-70b-8192"): | |
try: | |
chat_completion = groq_client.chat.completions.create( | |
messages=[{ | |
"role": "user", | |
"content": prompt | |
}], | |
model=model_name, | |
temperature=0.7, | |
max_tokens=500 | |
) | |
return chat_completion.choices[0].message.content.strip() | |
except Exception as e: | |
print(f"Error querying Groq API: {e}") | |
return "" | |
def handle_submit(): | |
user_input = input_field.value.strip() | |
if not user_input: | |
show_message("Please enter a question") | |
return | |
response = get_best_answer(user_input) | |
if response.get('should_scroll', False): | |
scroll_to_answer() | |
display_response(response.get('response', '')) | |
def get_best_answer(user_input): | |
# 1. Check for empty input | |
if not user_input.strip(): | |
return None # This will be handled in the frontend to prevent submission | |
user_input_lower = user_input.lower().strip() | |
# 2. Check for minimum word count (3 words) | |
if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS): | |
return "Please ask your question properly with at least 3 words." | |
# 3. Handle greetings (regardless of word count) | |
if any(greet in user_input_lower for greet in GREETINGS): | |
greeting_response = query_groq_llm( | |
f"You are an official assistant for University of Education Lahore. " | |
f"Respond to this greeting in a friendly and professional manner: {user_input}" | |
) | |
return greeting_response if greeting_response else "Hello! How can I assist you today?" | |
# 4. Check if question is about fee | |
if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]): | |
return ( | |
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n" | |
"You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n" | |
"π https://ue.edu.pk/allfeestructure.php" | |
) | |
# π Continue with normal similarity-based logic | |
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0] | |
best_match_idx = similarities.argmax().item() | |
best_score = similarities[best_match_idx].item() | |
# Save unmatched queries (threshold = 0.65) | |
if best_score < 0.65: | |
manage_unmatched_queries(user_input) | |
if best_score >= 0.65: | |
original_answer = dataset_answers[best_match_idx] | |
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response: | |
Question: {user_input} | |
Original Answer: {original_answer} | |
Improved Answer:""" | |
else: | |
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response: | |
Include relevant details about university policies. | |
If unsure, direct to official channels. | |
Question: {user_input} | |
Official Answer:""" | |
llm_response = query_groq_llm(prompt) | |
if llm_response: | |
for marker in ["Improved Answer:", "Official Answer:"]: | |
if marker in llm_response: | |
response = llm_response.split(marker)[-1].strip() | |
break | |
else: | |
response = llm_response | |
else: | |
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information: | |
π +92-42-99262231-33 | |
βοΈ [email protected] | |
π ue.edu.pk""" | |
# Return the response along with a flag to indicate auto-scrolling should happen | |
return { | |
"response": response, | |
"should_scroll": True # Frontend should use this to trigger auto-scrolling | |
} |