File size: 6,580 Bytes
0e95308
 
 
acefd67
0e95308
 
 
 
 
 
521d8b2
5362f0d
0e95308
 
 
 
 
 
 
 
 
 
018c04e
 
 
 
2cb70a0
 
 
 
 
 
 
acefd67
 
 
 
 
 
 
 
 
0e95308
 
 
 
 
 
018c04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb70a0
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8d2fb
2cb70a0
 
 
 
84f2063
2cb70a0
 
 
 
 
 
 
 
 
 
 
 
 
 
c23cce8
ca1fb1d
 
2cb70a0
ca1fb1d
 
2978c6a
84f2063
 
2978c6a
 
 
 
2cb70a0
c23cce8
 
 
2978c6a
 
85be5b5
2978c6a
 
 
 
 
 
 
 
 
 
 
ca1fb1d
2978c6a
 
 
 
 
 
 
 
 
 
 
 
ca1fb1d
2cb70a0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
from sentence_transformers import SentenceTransformer, util
from groq import Groq
from datetime import datetime
import requests
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from dotenv import load_dotenv
import os
from datasets import load_dataset, Dataset, DatasetDict
import pandas as pd

# Load environment variables
load_dotenv()

# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))

# Load models and dataset
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

# Configuration
HF_DATASET_REPO = "midrees2806/unmatched_queries"  # Your dataset repo
HF_TOKEN = os.getenv("HF_TOKEN")  # From Space secrets

# Greeting words list
GREETINGS = [
    "hi", "hello", "hey", "good morning", "good afternoon", "good evening",
    "assalam o alaikum", "salam", "namaste", "hola", "bonjour", "hi there",
    "hey there", "greetings", "howdy"
]

# --- Dataset Loading ---
try:
    with open('dataset.json', 'r') as f:
        dataset = json.load(f)
    if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset):
        raise ValueError("Invalid dataset structure")
except Exception as e:
    print(f"Error loading dataset: {e}")
    dataset = []

# Precompute embeddings
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
dataset_answers = [item.get("response", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)

# --- Unmatched Queries Handler ---
def manage_unmatched_queries(query: str):
    """Save unmatched queries to HF Dataset with error handling"""
    try:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        # Load existing dataset or create new
        try:
            ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
            df = ds["train"].to_pandas()
        except:
            df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
        
        # Append new query (avoid duplicates)
        if query not in df["Query"].values:
            new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
            df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
            
            # Push to Hub
            updated_ds = Dataset.from_pandas(df)
            updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
    except Exception as e:
        print(f"Failed to save query: {e}")

# --- Enhanced LLM Query ---        
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
    try:
        chat_completion = groq_client.chat.completions.create(
            messages=[{
                "role": "user",
                "content": prompt
            }],
            model=model_name,
            temperature=0.7,
            max_tokens=500
        )
        return chat_completion.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error querying Groq API: {e}")
        return ""

def handle_submit():
    user_input = input_field.value.strip()
    
    if not user_input:
        show_message("Please enter a question")
        return
    
    response = get_best_answer(user_input)
    
    if response.get('should_scroll', False):
        scroll_to_answer()
    
    display_response(response.get('response', ''))        

def get_best_answer(user_input):
    # 1. Check for empty input
    if not user_input.strip():
        return None  # This will be handled in the frontend to prevent submission
    
    user_input_lower = user_input.lower().strip()
    
    # 2. Check for minimum word count (3 words)
    if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
        return "Please ask your question properly with at least 3 words."
    
    # 3. Handle greetings (regardless of word count)
    if any(greet in user_input_lower for greet in GREETINGS):
        greeting_response = query_groq_llm(
            f"You are an official assistant for University of Education Lahore. "
            f"Respond to this greeting in a friendly and professional manner: {user_input}"
        )
        return greeting_response if greeting_response else "Hello! How can I assist you today?"
    
    # 4. Check if question is about fee
    if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
        return (
            "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
            "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
            "πŸ”— https://ue.edu.pk/allfeestructure.php"
        )

    # πŸ” Continue with normal similarity-based logic
    user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
    similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
    best_match_idx = similarities.argmax().item()
    best_score = similarities[best_match_idx].item()

    # Save unmatched queries (threshold = 0.65)
    if best_score < 0.65:
        manage_unmatched_queries(user_input)

    if best_score >= 0.65:
        original_answer = dataset_answers[best_match_idx]
        prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
        Question: {user_input}
        Original Answer: {original_answer}
        Improved Answer:"""
    else:
        prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
        Include relevant details about university policies.
        If unsure, direct to official channels.
        Question: {user_input}
        Official Answer:"""

    llm_response = query_groq_llm(prompt)

    if llm_response:
        for marker in ["Improved Answer:", "Official Answer:"]:
            if marker in llm_response:
                response = llm_response.split(marker)[-1].strip()
                break
        else:
            response = llm_response
    else:
        response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
        πŸ“ž +92-42-99262231-33
        βœ‰οΈ [email protected]
        🌐 ue.edu.pk"""

    # Return the response along with a flag to indicate auto-scrolling should happen
    return {
        "response": response,
        "should_scroll": True  # Frontend should use this to trigger auto-scrolling
    }