midrees2806 commited on
Commit
2dff2c5
Β·
verified Β·
1 Parent(s): a9f7e8d

Update rag.py

Browse files
Files changed (1) hide show
  1. rag.py +73 -27
rag.py CHANGED
@@ -1,13 +1,11 @@
1
  import json
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
- import datetime
5
- import requests
6
- from io import BytesIO
7
- from PIL import Image, ImageDraw, ImageFont
8
- import numpy as np
9
- from dotenv import load_dotenv
10
  import os
 
 
 
11
 
12
  # Load environment variables
13
  load_dotenv()
@@ -15,18 +13,53 @@ load_dotenv()
15
  # Initialize Groq client
16
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
17
 
18
- # Load models and dataset
19
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
20
 
21
- # Load dataset (automatically using the path)
22
- with open('dataset.json', 'r') as f:
23
- dataset = json.load(f)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  # Precompute embeddings
26
- dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
27
- dataset_answers = [item.get("response", "") for item in dataset]
28
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
31
  try:
32
  chat_completion = groq_client.chat.completions.create(
@@ -43,23 +76,38 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
43
  print(f"Error querying Groq API: {e}")
44
  return ""
45
 
 
46
  def get_best_answer(user_input):
 
 
 
47
  user_input_lower = user_input.lower().strip()
48
 
49
- # πŸ‘‰ Check if question is about fee
50
- if any(keyword in user_input_lower for keyword in ["semester fee","semester fees"]):
 
 
 
 
 
 
 
 
 
51
  return (
52
  "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
53
- "You’ll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
54
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
55
  )
56
 
57
- # πŸ” Continue with normal similarity-based logic
58
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
59
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
60
  best_match_idx = similarities.argmax().item()
61
  best_score = similarities[best_match_idx].item()
62
 
 
 
 
63
  if best_score >= 0.65:
64
  original_answer = dataset_answers[best_match_idx]
65
  prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
@@ -76,16 +124,14 @@ def get_best_answer(user_input):
76
  llm_response = query_groq_llm(prompt)
77
 
78
  if llm_response:
79
- for marker in ["Improved Answer:", "Official Answer:"]:
80
  if marker in llm_response:
81
- response = llm_response.split(marker)[-1].strip()
82
- break
83
- else:
84
- response = llm_response
85
  else:
86
- response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
87
- πŸ“ž +92-42-99262231-33
88
- βœ‰οΈ [email protected]
89
- 🌐 ue.edu.pk"""
90
-
91
- return response
 
1
  import json
2
  from sentence_transformers import SentenceTransformer, util
3
  from groq import Groq
4
+ from datetime import datetime
 
 
 
 
 
5
  import os
6
+ import pandas as pd
7
+ from datasets import load_dataset, Dataset
8
+ from dotenv import load_dotenv
9
 
10
  # Load environment variables
11
  load_dotenv()
 
13
  # Initialize Groq client
14
  groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
15
 
16
+ # Load similarity model
17
  similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
18
 
19
+ # Config
20
+ HF_DATASET_REPO = "midrees2806/unmatched_queries"
21
+ HF_TOKEN = os.getenv("HF_TOKEN")
22
+
23
+ # Greeting list
24
+ GREETINGS = [
25
+ "hi", "hello", "hey", "good morning", "good afternoon", "good evening",
26
+ "assalam o alaikum", "salam", "aoa", "hi there",
27
+ "hey there", "greetings"
28
+ ]
29
+
30
+ # Load local dataset
31
+ try:
32
+ with open('dataset.json', 'r') as f:
33
+ dataset = json.load(f)
34
+ if not all(isinstance(item, dict) and 'Question' in item and 'Answer' in item for item in dataset):
35
+ raise ValueError("Invalid dataset structure")
36
+ except Exception as e:
37
+ print(f"Error loading dataset: {e}")
38
+ dataset = []
39
 
40
  # Precompute embeddings
41
+ dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
42
+ dataset_answers = [item.get("Answer", "") for item in dataset]
43
  dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
44
 
45
+ # Save unmatched queries to Hugging Face
46
+ def manage_unmatched_queries(query: str):
47
+ try:
48
+ timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
49
+ try:
50
+ ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
51
+ df = ds["train"].to_pandas()
52
+ except:
53
+ df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
54
+ if query not in df["Query"].values:
55
+ new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
56
+ df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
57
+ updated_ds = Dataset.from_pandas(df)
58
+ updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
59
+ except Exception as e:
60
+ print(f"Failed to save query: {e}")
61
+
62
+ # Query Groq LLM
63
  def query_groq_llm(prompt, model_name="llama3-70b-8192"):
64
  try:
65
  chat_completion = groq_client.chat.completions.create(
 
76
  print(f"Error querying Groq API: {e}")
77
  return ""
78
 
79
+ # Main logic function to be called from Gradio
80
  def get_best_answer(user_input):
81
+ if not user_input.strip():
82
+ return "Please enter a valid question."
83
+
84
  user_input_lower = user_input.lower().strip()
85
 
86
+ if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
87
+ return "Please ask your question properly with at least 3 words."
88
+
89
+ if any(greet in user_input_lower for greet in GREETINGS):
90
+ greeting_response = query_groq_llm(
91
+ f"You are an official assistant for University of Education Lahore. "
92
+ f"Respond to this greeting in a friendly and professional manner: {user_input}"
93
+ )
94
+ return greeting_response if greeting_response else "Hello! How can I assist you today?"
95
+
96
+ if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
97
  return (
98
  "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
99
+ "You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
100
  "πŸ”— https://ue.edu.pk/allfeestructure.php"
101
  )
102
 
 
103
  user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
104
  similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
105
  best_match_idx = similarities.argmax().item()
106
  best_score = similarities[best_match_idx].item()
107
 
108
+ if best_score < 0.65:
109
+ manage_unmatched_queries(user_input)
110
+
111
  if best_score >= 0.65:
112
  original_answer = dataset_answers[best_match_idx]
113
  prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
 
124
  llm_response = query_groq_llm(prompt)
125
 
126
  if llm_response:
127
+ for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]:
128
  if marker in llm_response:
129
+ return llm_response.split(marker)[-1].strip()
130
+ return llm_response
 
 
131
  else:
132
+ return dataset_answers[best_match_idx] if best_score >= 0.65 else (
133
+ "For official information:\n"
134
+ "πŸ“ž +92-42-99262231-33\n"
135
+ "βœ‰οΈ info@ue.edu.pk\n"
136
+ "🌐 https://ue.edu.pk"
137
+ )