Spaces:
Running
Running
Update rag.py
Browse files
rag.py
CHANGED
@@ -27,10 +27,10 @@ GREETINGS = [
|
|
27 |
"hey there", "greetings"
|
28 |
]
|
29 |
|
30 |
-
# Normalize user input for internal processing
|
31 |
def normalize_input(text):
|
32 |
text = text.lower().strip()
|
33 |
-
text = text.replace("which", "what")
|
34 |
return text
|
35 |
|
36 |
# Load local dataset
|
@@ -82,12 +82,17 @@ def query_groq_llm(prompt, model_name="llama3-70b-8192"):
|
|
82 |
print(f"Error querying Groq API: {e}")
|
83 |
return ""
|
84 |
|
85 |
-
# Main logic function
|
86 |
def get_best_answer(user_input):
|
87 |
if not user_input.strip():
|
88 |
return "Please enter a valid question."
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
|
93 |
return "Please ask your question properly with at least 3 words."
|
@@ -95,7 +100,7 @@ def get_best_answer(user_input):
|
|
95 |
if any(greet in user_input_lower for greet in GREETINGS):
|
96 |
greeting_response = query_groq_llm(
|
97 |
f"You are an official assistant for University of Education Lahore. "
|
98 |
-
f"Respond to this greeting in a friendly and professional manner: {
|
99 |
)
|
100 |
return greeting_response if greeting_response else "Hello! How can I assist you today?"
|
101 |
|
@@ -106,15 +111,14 @@ def get_best_answer(user_input):
|
|
106 |
"π https://ue.edu.pk/allfeestructure.php"
|
107 |
)
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
user_embedding = similarity_model.encode(normalized_input, convert_to_tensor=True)
|
112 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
113 |
best_match_idx = similarities.argmax().item()
|
114 |
best_score = similarities[best_match_idx].item()
|
115 |
|
116 |
if best_score < 0.65:
|
117 |
-
manage_unmatched_queries(
|
118 |
|
119 |
if best_score >= 0.65:
|
120 |
original_answer = dataset_answers[best_match_idx]
|
@@ -123,7 +127,7 @@ Rephrase the following official answer clearly and professionally.
|
|
123 |
Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
|
124 |
DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer.
|
125 |
### Question:
|
126 |
-
{
|
127 |
### Original Answer:
|
128 |
{original_answer}
|
129 |
### Rephrased Answer:
|
@@ -133,7 +137,7 @@ DO NOT add any new or extra information. ONLY rephrase and improve the clarity a
|
|
133 |
Include relevant details about university policies.
|
134 |
If unsure, direct to official channels.
|
135 |
### Question:
|
136 |
-
{
|
137 |
### Official Answer:
|
138 |
"""
|
139 |
|
@@ -150,4 +154,4 @@ If unsure, direct to official channels.
|
|
150 |
"π +92-42-99262231-33\n"
|
151 |
"βοΈ [email protected]\n"
|
152 |
"π https://ue.edu.pk"
|
153 |
-
)
|
|
|
27 |
"hey there", "greetings"
|
28 |
]
|
29 |
|
30 |
+
# Normalize user input for internal processing (with 'which' to 'what' replacement)
|
31 |
def normalize_input(text):
|
32 |
text = text.lower().strip()
|
33 |
+
text = text.replace("which", "what") # Add your requested replacement
|
34 |
return text
|
35 |
|
36 |
# Load local dataset
|
|
|
82 |
print(f"Error querying Groq API: {e}")
|
83 |
return ""
|
84 |
|
85 |
+
# Main logic function (with hidden 'which' to 'what' replacement)
|
86 |
def get_best_answer(user_input):
|
87 |
if not user_input.strip():
|
88 |
return "Please enter a valid question."
|
89 |
|
90 |
+
# Preserve original input for display
|
91 |
+
original_input = user_input
|
92 |
+
|
93 |
+
# Normalize input for processing (with hidden replacement)
|
94 |
+
processed_input = normalize_input(user_input)
|
95 |
+
user_input_lower = processed_input # Use normalized version for processing
|
96 |
|
97 |
if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
|
98 |
return "Please ask your question properly with at least 3 words."
|
|
|
100 |
if any(greet in user_input_lower for greet in GREETINGS):
|
101 |
greeting_response = query_groq_llm(
|
102 |
f"You are an official assistant for University of Education Lahore. "
|
103 |
+
f"Respond to this greeting in a friendly and professional manner: {original_input}"
|
104 |
)
|
105 |
return greeting_response if greeting_response else "Hello! How can I assist you today?"
|
106 |
|
|
|
111 |
"π https://ue.edu.pk/allfeestructure.php"
|
112 |
)
|
113 |
|
114 |
+
# Use normalized input for similarity matching
|
115 |
+
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
|
|
|
116 |
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
|
117 |
best_match_idx = similarities.argmax().item()
|
118 |
best_score = similarities[best_match_idx].item()
|
119 |
|
120 |
if best_score < 0.65:
|
121 |
+
manage_unmatched_queries(original_input) # Store original query
|
122 |
|
123 |
if best_score >= 0.65:
|
124 |
original_answer = dataset_answers[best_match_idx]
|
|
|
127 |
Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
|
128 |
DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer.
|
129 |
### Question:
|
130 |
+
{original_input} # Show original to user
|
131 |
### Original Answer:
|
132 |
{original_answer}
|
133 |
### Rephrased Answer:
|
|
|
137 |
Include relevant details about university policies.
|
138 |
If unsure, direct to official channels.
|
139 |
### Question:
|
140 |
+
{original_input} # Show original to user
|
141 |
### Official Answer:
|
142 |
"""
|
143 |
|
|
|
154 |
"π +92-42-99262231-33\n"
|
155 |
"βοΈ [email protected]\n"
|
156 |
"π https://ue.edu.pk"
|
157 |
+
)
|