Practice / rag.py
midrees2806's picture
Update rag.py
1bdac65 verified
raw
history blame
4.18 kB
import json
from datetime import datetime
from sentence_transformers import SentenceTransformer, util
from groq import Groq
from dotenv import load_dotenv
import os
from datasets import load_dataset, Dataset, DatasetDict
import pandas as pd
# Load environment variables
load_dotenv()
# Initialize clients
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Configuration
HF_DATASET_REPO = "midrees2806/unmatched_queries" # Your dataset repo
HF_TOKEN = os.getenv("HF_TOKEN") # From Space secrets
# --- Dataset Loading ---
try:
with open('dataset.json', 'r') as f:
dataset = json.load(f)
if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset):
raise ValueError("Invalid dataset structure")
except Exception as e:
print(f"Error loading dataset: {e}")
dataset = []
# Precompute embeddings
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
dataset_answers = [item.get("response", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
# --- Unmatched Queries Handler ---
def manage_unmatched_queries(query: str):
"""Save unmatched queries to HF Dataset with error handling"""
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Load existing dataset or create new
try:
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
df = ds["train"].to_pandas()
except:
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
# Append new query (avoid duplicates)
if query not in df["Query"].values:
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
# Push to Hub
updated_ds = Dataset.from_pandas(df)
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
except Exception as e:
print(f"Failed to save query: {e}")
# --- Enhanced LLM Query ---
def query_llm(prompt: str, model: str = "llama3-70b-8192") -> str:
try:
response = groq_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model=model,
temperature=0.7,
max_tokens=1024,
top_p=0.9
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"LLM Error: {e}")
return None
# --- Main Chat Function ---
def get_best_answer(user_input: str) -> str:
user_input = user_input.strip()
lower_input = user_input.lower()
# 1. Handle special cases
if any(kw in lower_input for kw in ["fee", "fees", "tuition"]):
return ("πŸ’° Fee information:\n"
"Please visit: https://ue.edu.pk/allfeestructure.php\n"
"For personalized help, contact [email protected]")
# 2. Semantic similarity search
query_embedding = similarity_model.encode(lower_input, convert_to_tensor=True)
scores = util.pytorch_cos_sim(query_embedding, dataset_embeddings)[0]
best_idx = scores.argmax().item()
best_score = scores[best_idx].item()
# 3. Save unmatched queries (threshold = 0.65)
if best_score < 0.65:
manage_unmatched_queries(user_input)
# 4. Generate response
if best_score >= 0.65:
context = dataset_answers[best_idx]
prompt = f"""University Assistant Task:
Question: {user_input}
Context: {context}
Generate a helpful, accurate response using the context. If unsure, say "Please contact [email protected]" """
else:
prompt = f"""As an official University of Education assistant, answer:
Question: {user_input}
Guidelines:
- Be polite and professional
- Direct to official channels if uncertain
- Keep responses under 3 sentences"""
response = query_llm(prompt)
return response or """For official assistance:
πŸ“ž +92-42-99262231-33
βœ‰οΈ [email protected]"""