Spaces:
Sleeping
Sleeping
Update rag.py
Browse files
rag.py
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
import json
|
2 |
-
import csv
|
3 |
-
from pathlib import Path
|
4 |
from datetime import datetime
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
from groq import Groq
|
7 |
from dotenv import load_dotenv
|
8 |
import os
|
|
|
9 |
import pandas as pd
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
13 |
|
14 |
-
# Initialize
|
15 |
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
16 |
-
|
17 |
-
# Load models and dataset
|
18 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
with open('dataset.json', 'r') as f:
|
23 |
dataset = json.load(f)
|
24 |
-
# Validate dataset structure
|
25 |
if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset):
|
26 |
raise ValueError("Invalid dataset structure")
|
27 |
-
except
|
28 |
print(f"Error loading dataset: {e}")
|
29 |
dataset = []
|
30 |
|
@@ -33,88 +33,82 @@ dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
|
|
33 |
dataset_answers = [item.get("response", "") for item in dataset]
|
34 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
35 |
|
36 |
-
#
|
37 |
-
def
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
try:
|
48 |
-
|
49 |
-
messages=[{
|
50 |
-
|
51 |
-
"content": prompt
|
52 |
-
}],
|
53 |
-
model=model_name,
|
54 |
temperature=0.7,
|
55 |
-
max_tokens=
|
|
|
56 |
)
|
57 |
-
return
|
58 |
except Exception as e:
|
59 |
-
print(f"Error
|
60 |
return None
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
writer = csv.writer(f)
|
67 |
-
writer.writerow([query, timestamp])
|
68 |
-
except Exception as e:
|
69 |
-
print(f"Error saving unmatched query: {e}")
|
70 |
-
|
71 |
-
def get_best_answer(user_input):
|
72 |
-
user_input_lower = user_input.lower().strip()
|
73 |
|
74 |
-
# Handle
|
75 |
-
if any(
|
76 |
-
return (
|
77 |
-
|
78 |
-
|
79 |
-
"π https://ue.edu.pk/allfeestructure.php"
|
80 |
-
)
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
best_score =
|
87 |
|
88 |
-
# Save unmatched queries
|
89 |
if best_score < 0.65:
|
90 |
-
|
91 |
|
|
|
92 |
if best_score >= 0.65:
|
93 |
-
|
94 |
-
prompt = f"""
|
95 |
Question: {user_input}
|
96 |
-
|
97 |
-
|
98 |
else:
|
99 |
-
prompt = f"""As an official
|
100 |
-
Include relevant details about university policies.
|
101 |
-
If unsure, direct to official channels.
|
102 |
Question: {user_input}
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
else:
|
113 |
-
response = llm_response
|
114 |
-
else:
|
115 |
-
response = dataset_answers[best_match_idx] if best_score >= 0.65 else """For official information:
|
116 |
-
π +92-42-99262231-33
|
117 |
-
βοΈ [email protected]
|
118 |
-
π ue.edu.pk"""
|
119 |
-
|
120 |
-
return response
|
|
|
1 |
import json
|
|
|
|
|
2 |
from datetime import datetime
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
from groq import Groq
|
5 |
from dotenv import load_dotenv
|
6 |
import os
|
7 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
8 |
import pandas as pd
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Initialize clients
|
14 |
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
|
|
|
15 |
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
16 |
|
17 |
+
# Configuration
|
18 |
+
HF_DATASET_REPO = "midrees2806/unmatched_queries" # Your dataset repo
|
19 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # From Space secrets
|
20 |
+
|
21 |
+
# --- Dataset Loading ---
|
22 |
try:
|
23 |
with open('dataset.json', 'r') as f:
|
24 |
dataset = json.load(f)
|
|
|
25 |
if not all(isinstance(item, dict) and 'input' in item and 'response' in item for item in dataset):
|
26 |
raise ValueError("Invalid dataset structure")
|
27 |
+
except Exception as e:
|
28 |
print(f"Error loading dataset: {e}")
|
29 |
dataset = []
|
30 |
|
|
|
33 |
dataset_answers = [item.get("response", "") for item in dataset]
|
34 |
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
|
35 |
|
36 |
+
# --- Unmatched Queries Handler ---
|
37 |
+
def manage_unmatched_queries(query: str):
|
38 |
+
"""Save unmatched queries to HF Dataset with error handling"""
|
39 |
+
try:
|
40 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
41 |
+
|
42 |
+
# Load existing dataset or create new
|
43 |
+
try:
|
44 |
+
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
|
45 |
+
df = ds["train"].to_pandas()
|
46 |
+
except:
|
47 |
+
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
|
48 |
+
|
49 |
+
# Append new query (avoid duplicates)
|
50 |
+
if query not in df["Query"].values:
|
51 |
+
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
|
52 |
+
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
|
53 |
+
|
54 |
+
# Push to Hub
|
55 |
+
updated_ds = Dataset.from_pandas(df)
|
56 |
+
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Failed to save query: {e}")
|
59 |
|
60 |
+
# --- Enhanced LLM Query ---
|
61 |
+
def query_llm(prompt: str, model: str = "llama3-70b-8192") -> str:
|
62 |
try:
|
63 |
+
response = groq_client.chat.completions.create(
|
64 |
+
messages=[{"role": "user", "content": prompt}],
|
65 |
+
model=model,
|
|
|
|
|
|
|
66 |
temperature=0.7,
|
67 |
+
max_tokens=1024,
|
68 |
+
top_p=0.9
|
69 |
)
|
70 |
+
return response.choices[0].message.content.strip()
|
71 |
except Exception as e:
|
72 |
+
print(f"LLM Error: {e}")
|
73 |
return None
|
74 |
|
75 |
+
# --- Main Chat Function ---
|
76 |
+
def get_best_answer(user_input: str) -> str:
|
77 |
+
user_input = user_input.strip()
|
78 |
+
lower_input = user_input.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# 1. Handle special cases
|
81 |
+
if any(kw in lower_input for kw in ["fee", "fees", "tuition"]):
|
82 |
+
return ("π° Fee information:\n"
|
83 |
+
"Please visit: https://ue.edu.pk/allfeestructure.php\n"
|
84 |
+
"For personalized help, contact [email protected]")
|
|
|
|
|
85 |
|
86 |
+
# 2. Semantic similarity search
|
87 |
+
query_embedding = similarity_model.encode(lower_input, convert_to_tensor=True)
|
88 |
+
scores = util.pytorch_cos_sim(query_embedding, dataset_embeddings)[0]
|
89 |
+
best_idx = scores.argmax().item()
|
90 |
+
best_score = scores[best_idx].item()
|
91 |
|
92 |
+
# 3. Save unmatched queries (threshold = 0.65)
|
93 |
if best_score < 0.65:
|
94 |
+
manage_unmatched_queries(user_input)
|
95 |
|
96 |
+
# 4. Generate response
|
97 |
if best_score >= 0.65:
|
98 |
+
context = dataset_answers[best_idx]
|
99 |
+
prompt = f"""University Assistant Task:
|
100 |
Question: {user_input}
|
101 |
+
Context: {context}
|
102 |
+
Generate a helpful, accurate response using the context. If unsure, say "Please contact [email protected]" """
|
103 |
else:
|
104 |
+
prompt = f"""As an official University of Education assistant, answer:
|
|
|
|
|
105 |
Question: {user_input}
|
106 |
+
Guidelines:
|
107 |
+
- Be polite and professional
|
108 |
+
- Direct to official channels if uncertain
|
109 |
+
- Keep responses under 3 sentences"""
|
110 |
+
|
111 |
+
response = query_llm(prompt)
|
112 |
+
return response or """For official assistance:
|
113 |
+
π +92-42-99262231-33
|
114 |
+
βοΈ [email protected]"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|