File size: 8,436 Bytes
40c3856
 
e4d75fe
 
 
40c3856
e4d75fe
 
 
 
40c3856
 
e4d75fe
 
 
 
40c3856
 
 
e4d75fe
 
 
 
40c3856
e4d75fe
 
 
40c3856
e4d75fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40c3856
e4d75fe
 
 
 
 
40c3856
e4d75fe
 
 
 
 
 
40c3856
e4d75fe
40c3856
e4d75fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40c3856
e4d75fe
 
 
40c3856
e4d75fe
 
 
40c3856
e4d75fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40c3856
e4d75fe
 
 
 
40c3856
 
 
e4d75fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40c3856
 
e4d75fe
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from flask import Flask, request, jsonify
from flask_cors import CORS
import base64
import io
import os
from PIL import Image
import logging
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
import easyocr
import numpy as np

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = Flask(__name__)
CORS(app)

# Global variables for models
trocr_processor = None
trocr_model = None
easyocr_reader = None

def initialize_models():
    """Initialize OCR models"""
    global trocr_processor, trocr_model, easyocr_reader
    
    try:
        # Initialize TrOCR for handwritten text (Microsoft's model)
        logger.info("Loading TrOCR model for handwritten text...")
        trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
        trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
        
        # Initialize EasyOCR for printed text
        logger.info("Loading EasyOCR for printed text...")
        easyocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
        
        logger.info("All models loaded successfully!")
        
    except Exception as e:
        logger.error(f"Error loading models: {str(e)}")
        raise e

def preprocess_image(image):
    """Preprocess image for better OCR results"""
    # Convert to RGB if needed
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    # Resize if image is too large
    max_size = 1024
    if max(image.size) > max_size:
        ratio = max_size / max(image.size)
        new_size = tuple(int(dim * ratio) for dim in image.size)
        image = image.resize(new_size, Image.Resampling.LANCZOS)
    
    return image

def extract_text_trocr(image):
    """Extract text using TrOCR (good for handwritten text)"""
    try:
        # Preprocess image
        image = preprocess_image(image)
        
        # Generate pixel values
        pixel_values = trocr_processor(image, return_tensors="pt").pixel_values
        
        # Generate text
        generated_ids = trocr_model.generate(pixel_values)
        generated_text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        
        return generated_text.strip()
    except Exception as e:
        logger.error(f"TrOCR error: {str(e)}")
        return ""

def extract_text_easyocr(image):
    """Extract text using EasyOCR (good for printed text)"""
    try:
        # Convert PIL image to numpy array
        image_np = np.array(preprocess_image(image))
        
        # Extract text
        results = easyocr_reader.readtext(image_np, detail=0)
        
        # Join all detected text
        extracted_text = ' '.join(results)
        return extracted_text.strip()
    except Exception as e:
        logger.error(f"EasyOCR error: {str(e)}")
        return ""

def process_image_ocr(image, ocr_type="auto"):
    """Process image with specified OCR method"""
    results = {}
    
    if ocr_type in ["auto", "handwritten", "trocr"]:
        trocr_text = extract_text_trocr(image)
        results["trocr"] = trocr_text
    
    if ocr_type in ["auto", "printed", "easyocr"]:
        easyocr_text = extract_text_easyocr(image)
        results["easyocr"] = easyocr_text
    
    # For auto mode, return the longer result or combine both
    if ocr_type == "auto":
        trocr_len = len(results.get("trocr", ""))
        easyocr_len = len(results.get("easyocr", ""))
        
        if trocr_len > 0 and easyocr_len > 0:
            # If both have results, combine them intelligently
            if abs(trocr_len - easyocr_len) / max(trocr_len, easyocr_len) < 0.3:
                # If lengths are similar, prefer EasyOCR for printed text
                results["final"] = results["easyocr"]
            else:
                # Use the longer result
                results["final"] = results["trocr"] if trocr_len > easyocr_len else results["easyocr"]
        elif trocr_len > 0:
            results["final"] = results["trocr"]
        elif easyocr_len > 0:
            results["final"] = results["easyocr"]
        else:
            results["final"] = ""
    else:
        # Return the specific model result
        results["final"] = results.get(ocr_type.replace("handwritten", "trocr").replace("printed", "easyocr"), "")
    
    return results

@app.route('/health', methods=['GET'])
def health_check():
    """Health check endpoint"""
    return jsonify({"status": "healthy", "models_loaded": True})

@app.route('/ocr', methods=['POST'])
def ocr_endpoint():
    """Main OCR endpoint"""
    try:
        # Check if image is provided
        if 'image' not in request.files and 'image_base64' not in request.json:
            return jsonify({"error": "No image provided"}), 400
        
        # Get OCR type preference
        ocr_type = request.form.get('type', 'auto')  # auto, handwritten, printed
        
        # Load image
        if 'image' in request.files:
            # File upload
            image_file = request.files['image']
            image = Image.open(image_file.stream)
        else:
            # Base64 image
            image_data = request.json['image_base64']
            if image_data.startswith('data:image'):
                # Remove data URL prefix
                image_data = image_data.split(',')[1]
            
            # Decode base64
            image_bytes = base64.b64decode(image_data)
            image = Image.open(io.BytesIO(image_bytes))
        
        # Process image
        results = process_image_ocr(image, ocr_type)
        
        response = {
            "success": True,
            "text": results["final"],
            "type_used": ocr_type,
            "details": {
                "trocr_result": results.get("trocr", ""),
                "easyocr_result": results.get("easyocr", "")
            } if ocr_type == "auto" else {}
        }
        
        return jsonify(response)
        
    except Exception as e:
        logger.error(f"OCR processing error: {str(e)}")
        return jsonify({"error": str(e), "success": False}), 500

@app.route('/ocr/batch', methods=['POST'])
def batch_ocr_endpoint():
    """Batch OCR endpoint for multiple images"""
    try:
        if 'images' not in request.files:
            return jsonify({"error": "No images provided"}), 400
        
        images = request.files.getlist('images')
        ocr_type = request.form.get('type', 'auto')
        
        results = []
        for i, image_file in enumerate(images):
            try:
                image = Image.open(image_file.stream)
                ocr_results = process_image_ocr(image, ocr_type)
                
                results.append({
                    "index": i,
                    "filename": image_file.filename,
                    "text": ocr_results["final"],
                    "success": True
                })
            except Exception as e:
                results.append({
                    "index": i,
                    "filename": image_file.filename,
                    "error": str(e),
                    "success": False
                })
        
        return jsonify({
            "success": True,
            "results": results,
            "total_processed": len(results)
        })
        
    except Exception as e:
        logger.error(f"Batch OCR error: {str(e)}")
        return jsonify({"error": str(e), "success": False}), 500

@app.route('/models/info', methods=['GET'])
def models_info():
    """Get information about loaded models"""
    return jsonify({
        "models": {
            "trocr": {
                "name": "microsoft/trocr-base-handwritten",
                "description": "Handwritten text recognition",
                "loaded": trocr_model is not None
            },
            "easyocr": {
                "name": "EasyOCR",
                "description": "Printed text recognition",
                "loaded": easyocr_reader is not None
            }
        },
        "supported_types": ["auto", "handwritten", "printed"],
        "supported_formats": ["PNG", "JPEG", "JPG", "BMP", "TIFF"]
    })

if __name__ == '__main__':
    # Initialize models on startup
    logger.info("Starting OCR service...")
    initialize_models()
    
    # Run the app
    port = int(os.environ.get('PORT', 5000))
    app.run(host='0.0.0.0', port=port, debug=False)