|
from flask import Flask, request, jsonify |
|
from flask_cors import CORS |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
|
|
MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat" |
|
MAX_NEW_TOKENS = 512 |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32 |
|
) |
|
print("Model loaded successfully!") |
|
except Exception as e: |
|
print(f"Model loading failed: {str(e)}") |
|
model = None |
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
@app.route('/chat', methods=['POST']) |
|
def chat(): |
|
if not model: |
|
return jsonify({"error": "Model not loaded"}), 500 |
|
|
|
data = request.json |
|
prompt = data.get("prompt", "") |
|
|
|
if not prompt: |
|
return jsonify({"error": "No prompt provided"}), 400 |
|
|
|
try: |
|
response = generate_response(prompt) |
|
return jsonify({"response": response}) |
|
|
|
except Exception as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/health', methods=['GET']) |
|
def health_check(): |
|
status = "ready" if model else "unavailable" |
|
return jsonify({"status": status}) |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=5000) |