Thinking / app.py
mike23415's picture
Update app.py
0aeef7f verified
raw
history blame
5.04 kB
import os
import time
import json
import numpy as np
from pathlib import Path
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
import torch
# Verify numpy version
assert np.__version__.startswith('1.'), f"Invalid numpy version {np.__version__} - must be 1.x series"
# Create cache directory if not exists
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
cache_dir.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
CORS(app)
# Model configuration
MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat"
MAX_NEW_TOKENS = 256
DEVICE = "cpu"
# Initialize model
try:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir)
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
device_map="auto",
torch_dtype=torch.float32,
low_cpu_mem_usage=True)
print("Model loaded successfully!")
except Exception as e:
print(f"Model loading failed: {str(e)}")
model = None
def stream_generator(prompt):
"""Generator function for streaming response with thinking steps"""
# Thinking phases
thinking_steps = [
"πŸ” Analyzing your question...",
"🧠 Accessing knowledge base...",
"πŸ’‘ Formulating response...",
"πŸ“š Verifying information..."
]
# Stream thinking steps
for step in thinking_steps:
yield json.dumps({"type": "thinking", "content": step}) + '\n'
time.sleep(1.5) # Simulate processing time
# Prepare streaming generation
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
streamer = TextStreamer(tokenizer, skip_prompt=True)
# Generate response chunks
try:
generated_ids = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
streamer=streamer,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
# Stream generated text
full_response = ""
for token_ids in generated_ids:
chunk = tokenizer.decode(token_ids, skip_special_tokens=True)
new_content = chunk[len(full_response):]
if new_content.strip():
full_response = chunk
yield json.dumps({
"type": "answer",
"content": new_content
}) + '\n'
except Exception as e:
yield json.dumps({
"type": "error",
"content": f"Generation error: {str(e)}"
}) + '\n'
yield json.dumps({"type": "complete"}) + '\n'
@app.route('/stream_chat', methods=['POST'])
def stream_chat():
if not model:
return jsonify({"error": "Model not loaded"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
return Response(
stream_generator(prompt),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive'
}
)
@app.route('/chat', methods=['POST'])
def chat():
if not model:
return jsonify({"error": "Model not loaded"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
try:
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("</s>")[0].strip()
return jsonify({"response": response})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
status = {
"model_loaded": bool(model),
"device": DEVICE,
"cache_dir": str(cache_dir),
"max_tokens": MAX_NEW_TOKENS,
"memory_usage": f"{torch.cuda.memory_allocated()/1024**2:.2f}MB"
if torch.cuda.is_available() else "CPU"
}
return jsonify(status)
@app.route('/')
def home():
return jsonify({
"service": "DeepSeek Chat API",
"endpoints": {
"POST /chat": "Single-response chat",
"POST /stream_chat": "Streaming chat with thinking steps",
"GET /health": "Service health check"
},
"config": {
"model": MODEL_NAME,
"max_tokens": MAX_NEW_TOKENS,
"cache_location": str(cache_dir)
}
})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)