Thinking / app.py
mike23415's picture
Update app.py
a7b29f8 verified
raw
history blame
10.4 kB
from flask import Flask, request, jsonify, Response, stream_with_context
from flask_cors import CORS
import os
import torch
import time
import logging
import threading
import queue
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Fix caching issue on Hugging Face Spaces
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
os.environ["HF_HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp"
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Global model variables
tokenizer = None
model = None
# Initialize models once on startup
def initialize_models():
global tokenizer, model
try:
logger.info("Loading language model...")
# You can change the model here if needed
model_name = "Qwen/Qwen2.5-1.5B-Instruct" # Good balance of quality and speed for CPU
# Load tokenizer with caching
logger.info(f"Loading tokenizer: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True # Use the fast tokenizers when available
)
# Load model with optimizations for CPU
logger.info(f"Loading model: {model_name}")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Use float16 for lower memory
device_map="cpu", # Explicitly set to CPU
low_cpu_mem_usage=True, # Optimize memory loading
offload_folder="offload" # Use disk offloading if needed
)
# Handle padding tokens
if tokenizer.pad_token is None:
logger.info("Setting pad token to EOS token")
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Set up model configuration for better generation
model.config.do_sample = True # Enable sampling
model.config.temperature = 0.7 # Default temperature
model.config.top_p = 0.9 # Default top_p
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
# Function to simulate "thinking" process
def thinking_process(message, result_queue):
"""
This function simulates a thinking process and puts the result in the queue.
It includes both an explicit thinking stage and then a generation stage.
"""
try:
# Simulate explicit thinking stage
logger.info(f"Thinking about: '{message}'")
# Pause to simulate deeper thinking (helps with more complex queries)
time.sleep(1)
# Create thoughtful prompt with system message and thinking instructions
prompt = f"""<|im_start|>system
You are a helpful, friendly, and thoughtful AI assistant.
Let's approach the user's request step by step:
1. First, understand what the user is really asking
2. Consider the key aspects we need to address
3. Think about the best way to structure the response
4. Provide clear, accurate information in a conversational tone
Always think carefully before responding, consider different angles, and provide thoughtful, detailed answers.
<|im_end|>
<|im_start|>user
{message}<|im_end|>
<|im_start|>assistant
"""
# Handle inputs
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
inputs = {k: v.to('cpu') for k, v in inputs.items()}
# Generate answer with streaming
streamer = TextStreamer(tokenizer, result_queue)
# Simulate thinking first by sending some initial dots
result_queue.put("Let me think about this...")
time.sleep(0.5)
# Generate response - we use a temperature of 0.7 for more thoughtful outputs
# and top_p for nucleus sampling to avoid repetitive or generic responses
try:
model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
streamer=streamer,
num_beams=2, # Using 2 beams helps with coherence
no_repeat_ngram_size=3,
repetition_penalty=1.2 # Discourages token repetition
)
except Exception as e:
logger.error(f"Model generation error: {str(e)}")
result_queue.put(f"\n\nI apologize, but I encountered an error while processing your request.")
# Signal generation is complete
result_queue.put(None)
except Exception as e:
logger.error(f"Error in thinking process: {str(e)}")
result_queue.put(f"I apologize, but I encountered an error while processing your request: {str(e)}")
# Signal generation is complete
result_queue.put(None)
# TextStreamer class for token-by-token generation
class TextStreamer:
def __init__(self, tokenizer, queue):
self.tokenizer = tokenizer
self.queue = queue
self.current_tokens = []
def put(self, token_ids):
self.current_tokens.extend(token_ids.tolist())
text = self.tokenizer.decode(self.current_tokens, skip_special_tokens=True)
self.queue.put(text)
def end(self):
pass
# API route for home page
@app.route('/')
def home():
return jsonify({"message": "AI Chat API is running!"})
# API route for streaming chat responses
@app.route('/chat', methods=['POST', 'GET'])
def chat():
# Handle both POST JSON and GET query parameters for flexibility
if request.method == 'POST':
try:
data = request.get_json()
message = data.get("message", "")
except:
# If JSON parsing fails, try form data
message = request.form.get("message", "")
else: # GET
message = request.args.get("message", "")
if not message:
return jsonify({"error": "Message is required"}), 400
try:
def generate():
# Signal the start of streaming with headers
yield "retry: 1000\n"
yield "event: message\n"
# Show thinking indicator
yield f"data: [Thinking...]\n\n"
# Create a queue for communication between threads
result_queue = queue.Queue()
# Start thinking in a separate thread
thread = threading.Thread(target=thinking_process, args=(message, result_queue))
thread.daemon = True # Make thread die when main thread exits
thread.start()
# Stream results as they become available
previous_text = ""
while True:
try:
result = result_queue.get(block=True, timeout=30) # 30 second timeout
if result is None: # End of generation
break
# Only yield the new part of the text
if isinstance(result, str):
new_part = result[len(previous_text):]
previous_text = result
if new_part:
yield f"data: {json.dumps(new_part)}\n\n"
time.sleep(0.01) # Small delay for more natural typing effect
except queue.Empty:
# Timeout occurred
yield "data: [Generation timeout. The model is taking too long to respond.]\n\n"
break
yield "data: [DONE]\n\n"
return Response(
stream_with_context(generate()),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'X-Accel-Buffering': 'no' # Disable buffering for Nginx
}
)
except Exception as e:
logger.error(f"Error processing chat request: {str(e)}")
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
# Simple API for non-streaming chat (fallback)
@app.route('/chat-simple', methods=['POST'])
def chat_simple():
data = request.get_json()
message = data.get("message", "")
if not message:
return jsonify({"error": "Message is required"}), 400
try:
# Create prompt with system message
prompt = f"""<|im_start|>system
You are a helpful, friendly, and thoughtful AI assistant. Think carefully and provide informative, detailed responses.
<|im_end|>
<|im_start|>user
{message}<|im_end|>
<|im_start|>assistant
"""
# Handle inputs
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
inputs = {k: v.to('cpu') for k, v in inputs.items()}
# Generate answer
output = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_beams=1,
no_repeat_ngram_size=3
)
# Decode and format answer
answer = tokenizer.decode(output[0], skip_special_tokens=True)
# Clean up the response
if "<|im_end|>" in answer:
answer = answer.split("<|im_start|>assistant")[-1].split("<|im_end|>")[0].strip()
return jsonify({"response": answer})
except Exception as e:
logger.error(f"Error processing chat request: {str(e)}")
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
if __name__ == "__main__":
try:
# Initialize models at startup
initialize_models()
logger.info("Starting Flask application")
app.run(host="0.0.0.0", port=7860)
except Exception as e:
logger.critical(f"Failed to start application: {str(e)}")