Spaces:
Running
Running
File size: 10,810 Bytes
54a110c 10e9b7d 54a110c 10e9b7d 3c4371f 54a110c 7b0f470 ba67956 3305d00 54a110c 7b0f470 54a110c 6c88d14 dd9518b 4d96293 dd9518b 4d96293 dd9518b 7b0f470 10e9b7d d59f015 e80aab9 3db6293 e80aab9 6c88d14 4bc7d72 c4b95b3 08e987d 31243f4 d59f015 6c88d14 31243f4 6c88d14 4021bf3 4d96293 54a110c 7d65c66 4d96293 3c4371f 7e4a06b 4d96293 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 6c88d14 31243f4 e80aab9 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 4d96293 31243f4 c4b95b3 e80aab9 31243f4 3c4371f 4d96293 7d65c66 31243f4 e80aab9 dd9518b 3305d00 dd9518b 31243f4 dd9518b 3305d00 dd9518b 31243f4 dd9518b 3305d00 dd9518b 31243f4 6c88d14 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 4d96293 e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 4d96293 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 4d96293 e80aab9 4d96293 7d65c66 3c4371f 4d96293 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 4d96293 7d65c66 4d96293 3c4371f 31243f4 54a110c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# ruff: noqa: F401
import inspect
import os
import gradio as gr
import pandas as pd
import requests
import rich
import wikipediaapi
from loguru import logger
from mcp import StdioServerParameters
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
from ycecream import y
from basic_agent import BasicAgent, WikipediaSearchTool
from get_model import get_model
from openai_model import openai_model
y.configure(sln=0)
print = rich.get_console().print
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# y(os.environ)
y(DEFAULT_API_URL)
y(os.getenv("SPACE_ID")) # mikeee/final-assignment
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
_ = """ basic_agent.py
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
# """
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch all questions, run the BasicAgent on them, submit all answers, and display the results."""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions" # https://agents-course-unit4-scoring.hf.space/questions
submit_url = f"{api_url}/submit"
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# Prepare model and mcp_params
model = openai_model() # defautl llama4 scout
# messages = [{'role': 'user', 'content': 'Say this is a test.'}]
# print(model(messages))
# raise SystemExit("By intention")
mcp_searxng_params = StdioServerParameters(
**{
"command": "npx",
"args": ["-y", "mcp-searxng"],
"env": {
"SEARXNG_URL": os.getenv("SEARXNG_URL", "https://searx.be") # https://searx.space or run and set your own
},
}
)
# with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection, ToolCollection.from_mcp(mcp_markitdown_params, trust_remote_code=True) as markitdown_tools:
with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection:
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent(
# model=get_model(cat="gemini"),
# model=get_model(cat="llama"),
model=model,
tools=[
*searxng_tool_collection.tools,
# DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaSearchTool(),
FinalAnswerTool(),
],
# verbosity_level=1,
)
agent.agent.visualize()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
logger.debug(f">>> {submitted_answer=}, {question_text=}")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
agent.agent.visualize()
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}% ({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\nMessage: {result_data.get('message', 'No message received.')}"
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you
to develop your own, more robust solution. For instance for the delay process of the
submit button, a solution could be to cache the answers and submit in a seperate
action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|