File size: 10,810 Bytes
54a110c
 
10e9b7d
54a110c
10e9b7d
3c4371f
54a110c
7b0f470
ba67956
3305d00
54a110c
7b0f470
54a110c
6c88d14
dd9518b
4d96293
dd9518b
4d96293
dd9518b
7b0f470
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
6c88d14
4bc7d72
c4b95b3
08e987d
31243f4
d59f015
6c88d14
31243f4
 
 
 
 
 
 
 
6c88d14
4021bf3
4d96293
 
54a110c
7d65c66
4d96293
3c4371f
7e4a06b
4d96293
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
6c88d14
31243f4
e80aab9
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
4d96293
 
31243f4
c4b95b3
e80aab9
31243f4
 
3c4371f
4d96293
 
 
7d65c66
31243f4
 
e80aab9
dd9518b
 
 
 
 
 
 
 
 
 
3305d00
 
 
 
 
dd9518b
 
 
 
 
 
31243f4
dd9518b
 
 
 
 
 
 
 
 
 
 
3305d00
dd9518b
 
31243f4
dd9518b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3305d00
dd9518b
 
 
 
 
 
 
 
 
 
 
31243f4
6c88d14
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
4d96293
e80aab9
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
4d96293
 
 
 
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
4d96293
e80aab9
 
4d96293
7d65c66
3c4371f
4d96293
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
4d96293
7d65c66
 
 
 
 
 
4d96293
3c4371f
31243f4
54a110c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# ruff: noqa: F401
import inspect
import os

import gradio as gr
import pandas as pd
import requests
import rich
import wikipediaapi
from loguru import logger
from mcp import StdioServerParameters
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
from ycecream import y

from basic_agent import BasicAgent, WikipediaSearchTool
from get_model import get_model
from openai_model import openai_model

y.configure(sln=0)
print = rich.get_console().print

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# y(os.environ)
y(DEFAULT_API_URL)
y(os.getenv("SPACE_ID"))  # mikeee/final-assignment

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
_ = """ basic_agent.py
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        fixed_answer = "This is a default answer."
        print(f"Agent returning fixed answer: {fixed_answer}")
        return fixed_answer
# """


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Fetch all questions, run the BasicAgent on them, submit all answers, and display the results."""
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"  # https://agents-course-unit4-scoring.hf.space/questions
    submit_url = f"{api_url}/submit"

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")

    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # Prepare model and mcp_params
    model = openai_model()  # defautl llama4 scout

    # messages = [{'role': 'user', 'content': 'Say this is a test.'}]
    # print(model(messages))

    # raise SystemExit("By intention")

    mcp_searxng_params = StdioServerParameters(
        **{
            "command": "npx",
            "args": ["-y", "mcp-searxng"],
            "env": {
                "SEARXNG_URL": os.getenv("SEARXNG_URL", "https://searx.be")  # https://searx.space or run and set your own
            },
        }
    )

    # with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection, ToolCollection.from_mcp(mcp_markitdown_params, trust_remote_code=True) as markitdown_tools:
    with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection:
        # 1. Instantiate Agent ( modify this part to create your agent)
        try:
            agent = BasicAgent(
                # model=get_model(cat="gemini"),
                # model=get_model(cat="llama"),
                model=model,
                tools=[
                    *searxng_tool_collection.tools,
                    # DuckDuckGoSearchTool(),
                    VisitWebpageTool(),
                    WikipediaSearchTool(),
                    FinalAnswerTool(),
                ],
                # verbosity_level=1,
            )
            agent.agent.visualize()
        except Exception as e:
            print(f"Error instantiating agent: {e}")
            return f"Error initializing agent: {e}", None
        # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
        agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
        print(agent_code)

        # 3. Run your Agent
        results_log = []
        answers_payload = []
        print(f"Running agent on {len(questions_data)} questions...")
        for item in questions_data:
            task_id = item.get("task_id")
            question_text = item.get("question")
            if not task_id or question_text is None:
                print(f"Skipping item with missing task_id or question: {item}")
                continue
            try:
                submitted_answer = agent(question_text)
                logger.debug(f">>> {submitted_answer=}, {question_text=}")
                answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            except Exception as e:
                print(f"Error running agent on task {task_id}: {e}")
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

        if not answers_payload:
            print("Agent did not produce any answers to submit.")
            return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

        agent.agent.visualize()

    # 4. Prepare Submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}% ({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\nMessage: {result_data.get('message', 'No message received.')}"
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you
        to develop your own, more robust solution. For instance for the delay process of the
        submit button, a solution could be to cache the answers and submit in a seperate
        action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)