Spaces:
Running
Running
# pylint: disable=line-too-long,missing-module-docstring,missing-class-docstring,missing-function-docstring,broad-exception-caught, unused-variable, too-many-statements,too-many-return-statements,too-many-locals,redefined-builtin,unused-import | |
# ruff: noqa: F401 | |
import os | |
import typing | |
from dataclasses import dataclass, field | |
import pandas as pd | |
import requests | |
import rich | |
import smolagents | |
import wikipediaapi | |
from loguru import logger | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel, Tool, VisitWebpageTool | |
from get_model import get_model | |
from litellm_model import litellm_model | |
from openai_model import openai_model | |
print = rich.get_console().print | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
SPACE_ID = os.getenv("SPACE_ID", "mikeee/final-assignment") | |
AUTHORIZED_IMPORTS = [ | |
"requests", | |
"zipfile", | |
"pandas", | |
"numpy", | |
"sympy", | |
"json", | |
"bs4", | |
"pubchempy", | |
"xml", | |
"yahoo_finance", | |
"Bio", | |
"sklearn", | |
"scipy", | |
"pydub", | |
"PIL", | |
"chess", | |
"PyPDF2", | |
"pptx", | |
"torch", | |
"datetime", | |
"fractions", | |
"csv", | |
"io", | |
"glob", | |
] | |
class WikipediaSearchTool(Tool): | |
name = "wikipedia_search" | |
description = "Fetches a summary of a Wikipedia page based on a given search query (only one word or group of words)." | |
inputs = { | |
"query": {"type": "string", "description": "The search term for the Wikipedia page (only one word or group of words)."} | |
} | |
output_type = "string" | |
def __init__(self, lang="en"): | |
super().__init__() | |
self.wiki = wikipediaapi.Wikipedia( | |
language=lang, user_agent="MinimalAgent/1.0") | |
def forward(self, query: str): | |
page = self.wiki.page(query) | |
if not page.exists(): | |
return "No Wikipedia page found." | |
return page.summary[:1000] | |
class BasicAgent: | |
model: smolagents.models.Model = HfApiModel() | |
tools: list = field(default_factory=lambda: []) | |
verbosity_level: int = 0 | |
# def __init__(self): | |
def __post_init__(self): | |
"""Run post_init.""" | |
logger.debug("BasicAgent initialized.") | |
self.agent = CodeAgent( | |
tools=self.tools, | |
model=self.model, | |
verbosity_level=self.verbosity_level, | |
additional_authorized_imports=AUTHORIZED_IMPORTS, | |
planning_interval=4, | |
) | |
def get_answer(self, question: str): | |
return f"ans to {question[:220]}..." | |
def __call__(self, question: str) -> str: | |
# print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# print(f"Agent received question: {question}...") | |
# fixed_answer = "This is a default answer." | |
# print(f"Agent returning fixed answer: {fixed_answer}") | |
# return fixed_answer | |
try: | |
# answer = self.get_answer(question) | |
answer = self.agent.run(question) | |
except Exception as e: | |
logger.error(e) | |
answer = str(e)[:110] + "..." | |
return answer | |
def main(): | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" # noqa | |
# username = "mikeee" | |
# repo_name = "final-assignment" | |
username, _, repo_name = SPACE_ID.partition("/") | |
space_id = f"{username}/{repo_name}" | |
# model = get_model(cat="gemini") | |
_ = ( | |
"gemini-2.5-flash-preview-04-17", | |
# "https://api-proxy.me/gemini/v1beta", | |
"https://generativelanguage.googleapis.com/v1beta", | |
os.getenv("GEMINI_API_KEY"), | |
) | |
_ = ( | |
"grok-3-beta", | |
"https://api.x.ai/v1", | |
os.getenv("XAI_API_KEY"), | |
) | |
# model = litellm_model(*_) | |
model = openai_model(*_) | |
messages = [{'role': 'user', 'content': 'Say this is a test.'}] | |
print(model(messages)) | |
# raise SystemExit("By intention") | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
# agent = BasicAgent() | |
agent = BasicAgent( | |
model=model, | |
tools=[ | |
DuckDuckGoSearchTool(), | |
VisitWebpageTool(), | |
WikipediaSearchTool(), | |
FinalAnswerTool(), | |
] | |
) | |
agent.agent.visualize() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=30) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
# for item in questions_data: | |
# for item in questions_data[-1:]: | |
for item in questions_data[14:15]: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # noqa | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
print(answers_payload) | |
agent.agent.visualize() | |
return None, None | |
if __name__ == "__main__": | |
main() | |