qwen-7b-chat / app.py
ffreemt
Update info on top_k=0
7ea83b4
raw
history blame
11.4 kB
"""
Run qwen 7b chat.
transformers 4.31.0
import torch
torch.cuda.empty_cache()
"""
# pylint: disable=line-too-long, invalid-name, no-member, redefined-outer-name, missing-function-docstring, missing-class-docstring, broad-except,
import gc
import os
import time
from collections import deque
from dataclasses import asdict, dataclass
from types import SimpleNamespace
import gradio as gr
import torch
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from example_list import css, example_list
if not torch.cuda.is_available():
raise gr.Error("No cuda, cant continue...")
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
model_name = "Qwen/Qwen-7B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
n_gpus = torch.cuda.device_count()
try:
_ = f"{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB"
except AssertionError:
_ = 0
max_memory = {i: _ for i in range(n_gpus)}
def gen_model(model_name: str):
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto",
load_in_4bit=True,
max_memory=max_memory,
fp16=True,
torch_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = model.eval()
model.generation_config = GenerationConfig.from_pretrained(
model_name,
trust_remote_code=True,
)
return model
def user_clear(message, chat_history):
"""Gen a response, clear message in user textbox."""
logger.debug(f"{message=}")
# logger.remove() #to turn on trace
# logger.add(sys.stderr, level="INFO")
logger.trace(f"{chat_history=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
return "", chat_history
def user(message, chat_history):
"""Gen a response."""
logger.debug(f"{message=}")
logger.trace(f"{chat_history=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
return message, chat_history
# for rerun in tests
model = None
gc.collect()
torch.cuda.empty_cache()
model = gen_model(model_name)
def bot(chat_history, **kwargs):
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
return chat_history
logger.debug(f"{chat_history=}")
try:
_ = """
response, chat_history = model.chat(
tokenizer,
message,
history=chat_history,
temperature=0.7,
repetition_penalty=1.2,
# max_length=128,
)
"""
logger.debug("run model.chat...")
model.generation_config.update(**kwargs)
response, chat_history = model.chat(
tokenizer,
message,
chat_history[:-1],
# **kwargs,
)
del response
return chat_history
except Exception as exc:
logger.error(exc)
chat_history[:-1].append(["message", str(exc)])
return chat_history
def bot_stream(chat_history, **kwargs):
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
raise gr.Error(f"{chat_history=}")
# yield chat_history
# for elm in model.chat_stream(tokenizer, message, chat_history):
model.generation_config.update(**kwargs)
for elm in model.chat_stream(tokenizer, message, chat_history):
chat_history[-1] = [message, elm]
yield chat_history
SYSTEM_PROMPT = "You are a helpful assistant."
MAX_MAX_NEW_TOKENS = 1024
MAX_NEW_TOKENS = 128
@dataclass
class Config:
max_new_tokens: int = 64
repetition_penalty: float = 1.1
temperature: float = 1.0
top_k: int = 0
top_p: float = 0.9
# stats_default = SimpleNamespace(llm=model, system_prompt=SYSTEM_PROMPT, config=Config())
stats_default = SimpleNamespace(llm=None, system_prompt=SYSTEM_PROMPT, config=Config())
theme = gr.themes.Soft(text_size="sm")
with gr.Blocks(
theme=theme,
title=model_name.lower(),
css=css,
) as block:
stats = gr.State(stats_default)
if not torch.cuda.is_available():
raise gr.Error("GPU not available, cant run. Turn on GPU and restart")
config = asdict(stats.value.config)
def bot_stream_state(chat_history):
return bot_stream(chat_history, **config)
with gr.Accordion("🎈 Info", open=False):
gr.Markdown(
f"""<h5><center>{model_name.lower()}</center></h4>
Set `repetition_penalty` to 2.1 or higher for a chatty conversation. Lower it to 1.1 or smaller if more focused anwsers are desired (for example for translations or fact-oriented queries). Smaller `top_k` probably will result in smoothier sentences.
(`top_k=0` is equivalent to `top_k` equal to very very big though.) Consult `transformers` documentation for more details.
Most examples are meant for another model.
You probably should try to test
some related prompts.""",
elem_classes="xsmall",
)
chatbot = gr.Chatbot(height=500, value=deque([], maxlen=5)) # type: ignore
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
show_label=False,
# container=False,
lines=4,
max_lines=30,
show_copy_button=True,
# ).style(container=False)
)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=True)
clear = gr.Button("Clear History", visible=True)
msg_submit_event = msg.submit(
# fn=conversation.user_turn,
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
submit_click_event = submit.click(
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
fn=user_clear, # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[msg_submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion(label="Advanced Options", open=False):
system_prompt = gr.Textbox(
label="System prompt",
value=stats_default.system_prompt,
lines=3,
visible=True,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=stats_default.config.max_new_tokens,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=0.1,
maximum=40.0,
step=0.1,
value=stats_default.config.repetition_penalty,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=40.0,
step=0.1,
value=stats_default.config.temperature,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=stats_default.config.top_p,
)
top_k = gr.Slider(
label="Top-k",
minimum=0,
maximum=1000,
step=1,
value=stats_default.config.top_k,
)
def system_prompt_fn(system_prompt):
stats.value.system_prompt = system_prompt
logger.debug(f"{stats.value.system_prompt=}")
def max_new_tokens_fn(max_new_tokens):
stats.value.config.max_new_tokens = max_new_tokens
logger.debug(f"{stats.value.config.max_new_tokens=}")
def repetition_penalty_fn(repetition_penalty):
stats.value.config.repetition_penalty = repetition_penalty
logger.debug(f"{stats.value=}")
def temperature_fn(temperature):
stats.value.config.temperature = temperature
logger.debug(f"{stats.value=}")
def top_p_fn(top_p):
stats.value.config.top_p = top_p
logger.debug(f"{stats.value=}")
def top_k_fn(top_k):
stats.value.config.top_k = top_k
logger.debug(f"{stats.value=}")
system_prompt.change(system_prompt_fn, system_prompt)
max_new_tokens.change(max_new_tokens_fn, max_new_tokens)
repetition_penalty.change(repetition_penalty_fn, repetition_penalty)
temperature.change(temperature_fn, temperature)
top_p.change(top_p_fn, top_p)
top_k.change(top_k_fn, top_k)
def reset_fn(stats_):
logger.debug("reset_fn")
stats_ = gr.State(stats_default)
logger.debug(f"{stats_.value=}")
return (
stats_,
stats_default.system_prompt,
stats_default.config.max_new_tokens,
stats_default.config.repetition_penalty,
stats_default.config.temperature,
stats_default.config.top_p,
stats_default.config.top_k,
)
reset_btn = gr.Button("Reset")
reset_btn.click(
reset_fn,
stats,
[
stats,
system_prompt,
max_new_tokens,
repetition_penalty,
temperature,
top_p,
top_k,
],
)
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=example_list,
inputs=[msg],
examples_per_page=60,
)
with gr.Accordion("Disclaimer", open=False):
_ = model_name.lower()
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
f"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
if __name__ == "__main__":
block.queue(max_size=8).launch(debug=True)