Spaces:
Sleeping
Sleeping
File size: 5,512 Bytes
3aaeae4 5915d7a 071e28b 6378436 b4ffaef bc2edb8 b4ffaef 3aaeae4 b27a1d5 3aaeae4 b27a1d5 3aaeae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
##############################################################
# PDF Chat
#
# Mike Pastor February 2024
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
# from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Chunk size and overlap must not exceed the models capacity!
#
# def get_text_chunks(text):
# text_splitter = CharacterTextSplitter(
# separator="\n",
# chunk_size=800, # 1000
# chunk_overlap=200,
# length_function=len
# )
# chunks = text_splitter.split_text(text)
# return chunks
# def get_vectorstore(text_chunks):
# # embeddings = OpenAIEmbeddings()
# # pip install InstructorEmbedding
# # pip install sentence-transformers==2.2.2
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# # from InstructorEmbedding import INSTRUCTOR
# # model = INSTRUCTOR('hkunlp/instructor-xl')
# # sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
# # instruction = "Represent the Science title:"
# # embeddings = model.encode([[instruction, sentence]])
# # embeddings = model.encode(text_chunks)
# print('have Embeddings: ')
# # text_chunks="this is a test"
# # FAISS, Chroma and other vector databases
# #
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# print('FAISS succeeds: ')
# return vectorstore
# def get_conversation_chain(vectorstore):
# # llm = ChatOpenAI()
# # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
# # google/bigbird-roberta-base facebook/bart-large
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
# memory = ConversationBufferMemory(
# memory_key='chat_history', return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=vectorstore.as_retriever(),
# memory=memory,
# )
# return conversation_chain
# def handle_userinput(user_question):
# response = st.session_state.conversation({'question': user_question})
# # response = st.session_state.conversation({'summarization': user_question})
# st.session_state.chat_history = response['chat_history']
# # st.empty()
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(user_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
# else:
# st.write(bot_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
def main():
# load_dotenv()
st.set_page_config(page_title="MLP Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Mike's PDF Chat :books:")
user_question = st.text_input("Ask a question about your documents:")
# if user_question:
# handle_userinput(user_question)
# st.write( user_template, unsafe_allow_html=True)
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
# st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# Upon button press
if st.button("Process these files"):
with st.spinner("Processing..."):
#################################################################
# Track the overall time for file processing into Vectors
# #
from datetime import datetime
global_now = datetime.now()
global_current_time = global_now.strftime("%H:%M:%S")
st.write("Vectorizing Files - Current Time =", global_current_time)
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# st.write(raw_text)
# # get the text chunks
text_chunks = get_text_chunks(raw_text)
# st.write(text_chunks)
# # create vector store
vectorstore = get_vectorstore(text_chunks)
# # create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
# Mission Complete!
global_later = datetime.now()
st.write("Files Vectorized - Total EXECUTION Time =",
(global_later - global_now), global_later)
if __name__ == '__main__':
main()
|