Spaces:
Sleeping
Sleeping
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. | |
// | |
// This work is made available under the Nvidia Source Code License-NC. | |
// To view a copy of this license, visit | |
// https://nvlabs.github.io/stylegan2/license.html | |
using namespace tensorflow; | |
using namespace tensorflow::shape_inference; | |
//------------------------------------------------------------------------ | |
// CUDA kernel. | |
template <class T> | |
struct FusedBiasActKernelParams | |
{ | |
const T* x; // [sizeX] | |
const T* b; // [sizeB] or NULL | |
const T* ref; // [sizeX] or NULL | |
T* y; // [sizeX] | |
int grad; | |
int axis; | |
int act; | |
float alpha; | |
float gain; | |
int sizeX; | |
int sizeB; | |
int stepB; | |
int loopX; | |
}; | |
template <class T> | |
static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p) | |
{ | |
const float expRange = 80.0f; | |
const float halfExpRange = 40.0f; | |
const float seluScale = 1.0507009873554804934193349852946f; | |
const float seluAlpha = 1.6732632423543772848170429916717f; | |
// Loop over elements. | |
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x; | |
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x) | |
{ | |
// Load and apply bias. | |
float x = (float)p.x[xi]; | |
if (p.b) | |
x += (float)p.b[(xi / p.stepB) % p.sizeB]; | |
float ref = (p.ref) ? (float)p.ref[xi] : 0.0f; | |
if (p.gain != 0.0f & p.act != 9) | |
ref /= p.gain; | |
// Evaluate activation func. | |
float y; | |
switch (p.act * 10 + p.grad) | |
{ | |
// linear | |
default: | |
case 10: y = x; break; | |
case 11: y = x; break; | |
case 12: y = 0.0f; break; | |
// relu | |
case 20: y = (x > 0.0f) ? x : 0.0f; break; | |
case 21: y = (ref > 0.0f) ? x : 0.0f; break; | |
case 22: y = 0.0f; break; | |
// lrelu | |
case 30: y = (x > 0.0f) ? x : x * p.alpha; break; | |
case 31: y = (ref > 0.0f) ? x : x * p.alpha; break; | |
case 32: y = 0.0f; break; | |
// tanh | |
case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break; | |
case 41: y = x * (1.0f - ref * ref); break; | |
case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break; | |
// sigmoid | |
case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break; | |
case 51: y = x * ref * (1.0f - ref); break; | |
case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break; | |
// elu | |
case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break; | |
case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break; | |
case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break; | |
// selu | |
case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break; | |
case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break; | |
case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break; | |
// softplus | |
case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break; | |
case 81: y = x * (1.0f - expf(-ref)); break; | |
case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break; | |
// swish | |
case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break; | |
case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break; | |
case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break; | |
} | |
// Apply gain and store. | |
p.y[xi] = (T)(y * p.gain); | |
} | |
} | |
//------------------------------------------------------------------------ | |
// TensorFlow op. | |
template <class T> | |
struct FusedBiasActOp : public OpKernel | |
{ | |
FusedBiasActKernelParams<T> m_attribs; | |
FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx) | |
{ | |
memset(&m_attribs, 0, sizeof(m_attribs)); | |
OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad)); | |
OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis)); | |
OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act)); | |
OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha)); | |
OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain)); | |
OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative")); | |
OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative")); | |
OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative")); | |
} | |
void Compute(OpKernelContext* ctx) | |
{ | |
FusedBiasActKernelParams<T> p = m_attribs; | |
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream(); | |
const Tensor& x = ctx->input(0); // [...] | |
const Tensor& b = ctx->input(1); // [sizeB] or [0] | |
const Tensor& ref = ctx->input(2); // x.shape or [0] | |
p.x = x.flat<T>().data(); | |
p.b = (b.NumElements()) ? b.flat<T>().data() : NULL; | |
p.ref = (ref.NumElements()) ? ref.flat<T>().data() : NULL; | |
OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds")); | |
OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1")); | |
OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements")); | |
OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements")); | |
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large")); | |
p.sizeX = (int)x.NumElements(); | |
p.sizeB = (int)b.NumElements(); | |
p.stepB = 1; | |
for (int i = m_attribs.axis + 1; i < x.dims(); i++) | |
p.stepB *= (int)x.dim_size(i); | |
Tensor* y = NULL; // x.shape | |
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y)); | |
p.y = y->flat<T>().data(); | |
p.loopX = 4; | |
int blockSize = 4 * 32; | |
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1; | |
void* args[] = {&p}; | |
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream)); | |
} | |
}; | |
REGISTER_OP("FusedBiasAct") | |
.Input ("x: T") | |
.Input ("b: T") | |
.Input ("ref: T") | |
.Output ("y: T") | |
.Attr ("T: {float, half}") | |
.Attr ("grad: int = 0") | |
.Attr ("axis: int = 1") | |
.Attr ("act: int = 0") | |
.Attr ("alpha: float = 0.0") | |
.Attr ("gain: float = 1.0"); | |
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>); | |
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>); | |
//------------------------------------------------------------------------ | |