milyiyo's picture
Update app.py
0e3b8e8
raw
history blame
1.48 kB
import gradio as gr
from diffusers import LDMTextToImagePipeline
import torch
import numpy as np
import PIL
import cv2
import PIL.Image
import random
print('\nDEBUG: Version: 3')
#pipeline = LDMTextToImagePipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
ldm_pipeline = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=milyiyo.testing-diffusers" />'
def greet(name):
return "Hello " + name + "!!"
def genimage(prompt, iterations):
image = pipeline([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=iterations)["sample"]
return image[0]
#image_processed = image.cpu().permute(0, 2, 3, 1)
#image_processed = image_processed * 255.
#image_processed = image_processed.numpy().astype(np.uint8)
#image_pil = PIL.Image.fromarray(image_processed[0])
# save image
#file_name = "test.png"
#image_pil.save(file_name)
#img = cv2.imread(file_name)
##cv2_imshow(img)
#return img
def predict(prompt, steps=100):
torch.cuda.empty_cache()
generator = torch.manual_seed(42)
images = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, eta=0.3, guidance_scale=6.0)["sample"]
return images[0]
iface = gr.Interface(
fn=predict,
inputs=["text", "number"],
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"))
iface.launch()