Spaces:
Paused
Paused
File size: 1,348 Bytes
440d166 376d41a 440d166 8450044 440d166 376d41a 4642613 376d41a 4ba4563 376d41a 440d166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import transformers as t
import torch
import peft
# Load your fine-tuned model and tokenizer
tokenizer = t.AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf")
model = t.AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf")
tokenizer.pad_token_id = 0
config = peft.LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.005, bias="none", task_type="CAUSAL_LM")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = peft.get_peft_model(model, config).to(device)
peft.set_peft_model_state_dict(model, torch.load(f".weights/adapter_model.bin"))
# Define a prediction function
def generate_article(title):
prompt = f"Below is a title for an article. Write an article that appropriately suits the title: \n\n### Title:\n{title}\n\n### Article:\n"
pipe = t.pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1000)
output = pipe([prompt])
generated_article = output[0][0]["generated_text"]
return generated_article
# Create a Gradio interface
iface = gr.Interface(
fn=generate_article,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Article Title Here"),
outputs="text",
title="Article Generator",
description="Enter a title to generate an article."
)
# Launch the app
iface.launch()
|