Spaces:
Paused
Paused
import gradio as gr | |
import transformers as t | |
import torch | |
import peft | |
# Load your fine-tuned model and tokenizer | |
tokenizer = t.AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf") | |
model = t.AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf") | |
tokenizer.pad_token_id = 0 | |
config = peft.LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.005, bias="none", task_type="CAUSAL_LM") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = peft.get_peft_model(model, config).to(device) | |
peft.set_peft_model_state_dict(model, torch.load(f".weights/adapter_model.bin")) | |
# Define a prediction function | |
def generate_article(title): | |
prompt = f"Below is a title for an article. Write an article that appropriately suits the title: \n\n### Title:\n{title}\n\n### Article:\n" | |
pipe = t.pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1000) | |
output = pipe([prompt]) | |
generated_article = output[0][0]["generated_text"] | |
return generated_article | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_article, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Article Title Here"), | |
outputs="text", | |
title="Article Generator", | |
description="Enter a title to generate an article." | |
) | |
# Launch the app | |
iface.launch() | |