File size: 3,169 Bytes
c4f53c6
 
23943df
 
 
df2baf4
c4f53c6
 
 
23943df
c4f53c6
 
 
 
 
23943df
 
 
c4f53c6
23943df
 
 
 
c4f53c6
23943df
 
 
 
c4f53c6
23943df
c4f53c6
 
 
23943df
 
c4f53c6
df2f743
 
df2baf4
df2f743
 
 
df2baf4
c4f53c6
 
23943df
 
 
 
c4f53c6
 
23943df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df2baf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from fastapi import FastAPI
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
import faiss
import pandas as pd
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

app = FastAPI()

# Load AI Models
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base")
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")

# Load datasets
recommendations_df = pd.read_csv("treatment_recommendations.csv")
questions_df = pd.read_csv("symptom_questions.csv")

# FAISS Index for disorder detection
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True)
index = faiss.IndexFlatIP(treatment_embeddings.shape[1])
index.add(treatment_embeddings)

# FAISS Index for Question Retrieval
question_embeddings = embedding_model.encode(questions_df["Questions"].tolist(), convert_to_numpy=True)
question_index = faiss.IndexFlatL2(question_embeddings.shape[1])
question_index.add(question_embeddings)

# Request Model
class ChatRequest(BaseModel):
    message: str

class SummaryRequest(BaseModel):
    chat_history: list  # List of messages

@app.post("/get_questions")
def get_recommended_questions(request: ChatRequest):
    """Retrieve the most relevant diagnostic questions."""
    input_embedding = embedding_model.encode([request.message], convert_to_numpy=True)
    distances, indices = question_index.search(input_embedding, 3)
    retrieved_questions = [questions_df["Questions"].iloc[i] for i in indices[0]]
    return {"questions": retrieved_questions}

@app.post("/summarize_chat")
def summarize_chat(request: SummaryRequest):
    """Summarize full chat session at the end."""
    chat_text = " ".join(request.chat_history)
    inputs = summarization_tokenizer("summarize: " + chat_text, return_tensors="pt", max_length=4096, truncation=True)
    summary_ids = summarization_model.generate(inputs.input_ids, max_length=500, num_beams=4, early_stopping=True)
    summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return {"summary": summary}

@app.post("/detect_disorders")
def detect_disorders(request: SummaryRequest):
    """Detect psychiatric disorders from full chat history at the end."""
    full_chat_text = " ".join(request.chat_history)
    text_embedding = similarity_model.encode([full_chat_text], convert_to_numpy=True)
    distances, indices = index.search(text_embedding, 3)
    disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]]
    return {"disorders": disorders}

@app.post("/get_treatment")
def get_treatment(request: SummaryRequest):
    """Retrieve treatment recommendations based on detected disorders."""
    detected_disorders = detect_disorders(request)["disorders"]
    treatments = {
        disorder: recommendations_df[recommendations_df["Disorder"] == disorder]["Treatment Recommendation"].values[0]
        for disorder in detected_disorders
    }
    return {"treatments": treatments}