Spaces:
Runtime error
Runtime error
import torch | |
from torch.utils import data | |
import numpy as np | |
import os | |
from os.path import join as pjoin | |
import random | |
import codecs as cs | |
from tqdm import tqdm | |
class Text2MotionDataset(data.Dataset): | |
"""Dataset for Text2Motion generation task. | |
""" | |
def __init__(self, opt, mean, std, split_file, times=1, w_vectorizer=None, eval_mode=False): | |
self.opt = opt | |
self.max_length = 20 | |
self.times = times | |
self.w_vectorizer = w_vectorizer | |
self.eval_mode = eval_mode | |
min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24 | |
joints_num = opt.joints_num | |
data_dict = {} | |
id_list = [] | |
with cs.open(split_file, 'r') as f: | |
for line in f.readlines(): | |
id_list.append(line.strip()) | |
new_name_list = [] | |
length_list = [] | |
for name in tqdm(id_list): | |
try: | |
motion = np.load(pjoin(opt.motion_dir, name + '.npy')) | |
if (len(motion)) < min_motion_len or (len(motion) >= 200): | |
continue | |
text_data = [] | |
flag = False | |
with cs.open(pjoin(opt.text_dir, name + '.txt')) as f: | |
for line in f.readlines(): | |
text_dict = {} | |
line_split = line.strip().split('#') | |
caption = line_split[0] | |
tokens = line_split[1].split(' ') | |
f_tag = float(line_split[2]) | |
to_tag = float(line_split[3]) | |
f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
text_dict['caption'] = caption | |
text_dict['tokens'] = tokens | |
if f_tag == 0.0 and to_tag == 0.0: | |
flag = True | |
text_data.append(text_dict) | |
else: | |
n_motion = motion[int(f_tag*20) : int(to_tag*20)] | |
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200): | |
continue | |
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name | |
while new_name in data_dict: | |
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name | |
data_dict[new_name] = {'motion': n_motion, | |
'length': len(n_motion), | |
'text':[text_dict]} | |
new_name_list.append(new_name) | |
length_list.append(len(n_motion)) | |
if flag: | |
data_dict[name] = {'motion': motion, | |
'length': len(motion), | |
'text':text_data} | |
new_name_list.append(name) | |
length_list.append(len(motion)) | |
except: | |
# Some motion may not exist in KIT dataset | |
pass | |
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1])) | |
if opt.is_train: | |
# root_rot_velocity (B, seq_len, 1) | |
std[0:1] = std[0:1] / opt.feat_bias | |
# root_linear_velocity (B, seq_len, 2) | |
std[1:3] = std[1:3] / opt.feat_bias | |
# root_y (B, seq_len, 1) | |
std[3:4] = std[3:4] / opt.feat_bias | |
# ric_data (B, seq_len, (joint_num - 1)*3) | |
std[4: 4 + (joints_num - 1) * 3] = std[4: 4 + (joints_num - 1) * 3] / 1.0 | |
# rot_data (B, seq_len, (joint_num - 1)*6) | |
std[4 + (joints_num - 1) * 3: 4 + (joints_num - 1) * 9] = std[4 + (joints_num - 1) * 3: 4 + ( | |
joints_num - 1) * 9] / 1.0 | |
# local_velocity (B, seq_len, joint_num*3) | |
std[4 + (joints_num - 1) * 9: 4 + (joints_num - 1) * 9 + joints_num * 3] = std[ | |
4 + (joints_num - 1) * 9: 4 + ( | |
joints_num - 1) * 9 + joints_num * 3] / 1.0 | |
# foot contact (B, seq_len, 4) | |
std[4 + (joints_num - 1) * 9 + joints_num * 3:] = std[ | |
4 + (joints_num - 1) * 9 + joints_num * 3:] / opt.feat_bias | |
assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1] | |
np.save(pjoin(opt.meta_dir, 'mean.npy'), mean) | |
np.save(pjoin(opt.meta_dir, 'std.npy'), std) | |
self.mean = mean | |
self.std = std | |
self.length_arr = np.array(length_list) | |
self.data_dict = data_dict | |
self.name_list = name_list | |
def inv_transform(self, data): | |
return data * self.std + self.mean | |
def real_len(self): | |
return len(self.data_dict) | |
def __len__(self): | |
return self.real_len() * self.times | |
def __getitem__(self, item): | |
idx = item % self.real_len() | |
data = self.data_dict[self.name_list[idx]] | |
motion, m_length, text_list = data['motion'], data['length'], data['text'] | |
# Randomly select a caption | |
text_data = random.choice(text_list) | |
caption = text_data['caption'] | |
max_motion_length = self.opt.max_motion_length | |
if m_length >= self.opt.max_motion_length: | |
idx = random.randint(0, len(motion) - max_motion_length) | |
motion = motion[idx: idx + max_motion_length] | |
else: | |
padding_len = max_motion_length - m_length | |
D = motion.shape[1] | |
padding_zeros = np.zeros((padding_len, D)) | |
motion = np.concatenate((motion, padding_zeros), axis=0) | |
assert len(motion) == max_motion_length | |
"Z Normalization" | |
motion = (motion - self.mean) / self.std | |
if self.eval_mode: | |
tokens = text_data['tokens'] | |
if len(tokens) < self.opt.max_text_len: | |
# pad with "unk" | |
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
sent_len = len(tokens) | |
tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len) | |
else: | |
# crop | |
tokens = tokens[:self.opt.max_text_len] | |
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
sent_len = len(tokens) | |
pos_one_hots = [] | |
word_embeddings = [] | |
for token in tokens: | |
word_emb, pos_oh = self.w_vectorizer[token] | |
pos_one_hots.append(pos_oh[None, :]) | |
word_embeddings.append(word_emb[None, :]) | |
pos_one_hots = np.concatenate(pos_one_hots, axis=0) | |
word_embeddings = np.concatenate(word_embeddings, axis=0) | |
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length | |
return caption, motion, m_length | |