File size: 4,823 Bytes
a0d91d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
import torch.nn.functional as F

from .base_architecture import BaseArchitecture
from ..builder import (
    ARCHITECTURES,
    build_architecture,
    build_submodule,
    build_loss
)
from ..utils.gaussian_diffusion import (
    GaussianDiffusion, get_named_beta_schedule, create_named_schedule_sampler,
    ModelMeanType, ModelVarType, LossType, space_timesteps, SpacedDiffusion
)

def build_diffusion(cfg):
    beta_scheduler = cfg['beta_scheduler']
    diffusion_steps = cfg['diffusion_steps']
    
    betas = get_named_beta_schedule(beta_scheduler, diffusion_steps)
    model_mean_type = {
        'start_x': ModelMeanType.START_X,
        'previous_x': ModelMeanType.PREVIOUS_X,
        'epsilon': ModelMeanType.EPSILON
    }[cfg['model_mean_type']]
    model_var_type = {
        'learned': ModelVarType.LEARNED,
        'fixed_small': ModelVarType.FIXED_SMALL,
        'fixed_large': ModelVarType.FIXED_LARGE,
        'learned_range': ModelVarType.LEARNED_RANGE
    }[cfg['model_var_type']]
    if cfg.get('respace', None) is not None:
        diffusion = SpacedDiffusion(
            use_timesteps=space_timesteps(diffusion_steps, cfg['respace']),
            betas=betas,
            model_mean_type=model_mean_type,
            model_var_type=model_var_type,
            loss_type=LossType.MSE
        )
    else:
        diffusion = GaussianDiffusion(
            betas=betas,
            model_mean_type=model_mean_type,
            model_var_type=model_var_type,
            loss_type=LossType.MSE)
    return diffusion


@ARCHITECTURES.register_module()
class MotionDiffusion(BaseArchitecture):

    def __init__(self,
                 model=None,
                 loss_recon=None,
                 diffusion_train=None,
                 diffusion_test=None,
                 init_cfg=None,
                 inference_type='ddpm',
                 **kwargs):
        super().__init__(init_cfg=init_cfg, **kwargs)
        self.model = build_submodule(model)
        self.loss_recon = build_loss(loss_recon)
        self.diffusion_train = build_diffusion(diffusion_train)
        self.diffusion_test = build_diffusion(diffusion_test)
        self.sampler = create_named_schedule_sampler('uniform', self.diffusion_train)
        self.inference_type = inference_type
        
    def forward(self, **kwargs):
        motion, motion_mask = kwargs['motion'].float(), kwargs['motion_mask'].float()
        sample_idx = kwargs.get('sample_idx', None)
        clip_feat = kwargs.get('clip_feat', None)
        B, T = motion.shape[:2]
        text = []
        for i in range(B):
            text.append(kwargs['motion_metas'][i]['text'])

        if self.training:
            t, _ = self.sampler.sample(B, motion.device)
            output = self.diffusion_train.training_losses(
                model=self.model,
                x_start=motion,
                t=t,
                model_kwargs={
                    'motion_mask': motion_mask,
                    'motion_length': kwargs['motion_length'],
                    'text': text,
                    'clip_feat': clip_feat,
                    'sample_idx': sample_idx}
            )
            pred, target = output['pred'], output['target']
            recon_loss = self.loss_recon(pred, target, reduction_override='none')
            recon_loss = (recon_loss.mean(dim=-1) * motion_mask).sum() / motion_mask.sum()
            loss = {'recon_loss': recon_loss}
            return loss
        else:
            dim_pose = kwargs['motion'].shape[-1]
            model_kwargs = self.model.get_precompute_condition(device=motion.device, text=text, **kwargs)
            model_kwargs['motion_mask'] = motion_mask
            model_kwargs['sample_idx'] = sample_idx
            inference_kwargs = kwargs.get('inference_kwargs', {})
            if self.inference_type == 'ddpm':
                output = self.diffusion_test.p_sample_loop(
                    self.model,
                    (B, T, dim_pose),
                    clip_denoised=False,
                    progress=False,
                    model_kwargs=model_kwargs,
                    **inference_kwargs
                )
            else:
                output = self.diffusion_test.ddim_sample_loop(
                    self.model,
                    (B, T, dim_pose),
                    clip_denoised=False,
                    progress=False,
                    model_kwargs=model_kwargs,
                    eta=0,
                    **inference_kwargs
                )
            if getattr(self.model, "post_process") is not None:
                output = self.model.post_process(output)
            results = kwargs
            results['pred_motion'] = output
            results = self.split_results(results)
            return results