Spaces:
Running
Running
File size: 5,228 Bytes
a0d91d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils.stylization_block import StylizationBlock
from ..builder import ATTENTIONS
@ATTENTIONS.register_module()
class BaseMixedAttention(nn.Module):
def __init__(self, latent_dim,
text_latent_dim,
num_heads,
dropout,
time_embed_dim):
super().__init__()
self.num_heads = num_heads
self.norm = nn.LayerNorm(latent_dim)
self.text_norm = nn.LayerNorm(text_latent_dim)
self.query = nn.Linear(latent_dim, latent_dim)
self.key_text = nn.Linear(text_latent_dim, latent_dim)
self.value_text = nn.Linear(text_latent_dim, latent_dim)
self.key_motion = nn.Linear(latent_dim, latent_dim)
self.value_motion = nn.Linear(latent_dim, latent_dim)
self.dropout = nn.Dropout(dropout)
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
def forward(self, x, xf, emb, src_mask, cond_type, **kwargs):
"""
x: B, T, D
xf: B, N, L
"""
B, T, D = x.shape
N = xf.shape[1] + x.shape[1]
H = self.num_heads
# B, T, D
query = self.query(self.norm(x)).view(B, T, H, -1)
# B, N, D
text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1)
key = torch.cat((
self.key_text(self.text_norm(xf)),
self.key_motion(self.norm(x))
), dim=1).view(B, N, H, -1)
attention = torch.einsum('bnhl,bmhl->bnmh', query, key)
motion_mask = src_mask.view(B, 1, T, 1)
text_mask = text_cond_type.view(B, 1, -1, 1)
mask = torch.cat((text_mask, motion_mask), dim=2)
attention = attention + (1 - mask) * -1000000
attention = F.softmax(attention, dim=2)
value = torch.cat((
self.value_text(self.text_norm(xf)) * text_cond_type,
self.value_motion(self.norm(x)) * src_mask,
), dim=1).view(B, N, H, -1)
y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D)
y = x + self.proj_out(y, emb)
return y
@ATTENTIONS.register_module()
class BaseSelfAttention(nn.Module):
def __init__(self, latent_dim,
num_heads,
dropout,
time_embed_dim):
super().__init__()
self.num_heads = num_heads
self.norm = nn.LayerNorm(latent_dim)
self.query = nn.Linear(latent_dim, latent_dim)
self.key = nn.Linear(latent_dim, latent_dim)
self.value = nn.Linear(latent_dim, latent_dim)
self.dropout = nn.Dropout(dropout)
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
def forward(self, x, emb, src_mask, **kwargs):
"""
x: B, T, D
"""
B, T, D = x.shape
H = self.num_heads
# B, T, D
query = self.query(self.norm(x)).view(B, T, H, -1)
# B, N, D
key = self.key(self.norm(x)).view(B, T, H, -1)
attention = torch.einsum('bnhl,bmhl->bnmh', query, key)
mask = src_mask.view(B, 1, T, 1)
attention = attention + (1 - mask) * -1000000
attention = F.softmax(attention, dim=2)
value = (self.value(self.norm(x)) * src_mask).view(B, T, H, -1)
y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D)
y = x + self.proj_out(y, emb)
return y
@ATTENTIONS.register_module()
class BaseCrossAttention(nn.Module):
def __init__(self, latent_dim,
text_latent_dim,
num_heads,
dropout,
time_embed_dim):
super().__init__()
self.num_heads = num_heads
self.norm = nn.LayerNorm(latent_dim)
self.text_norm = nn.LayerNorm(text_latent_dim)
self.query = nn.Linear(latent_dim, latent_dim)
self.key = nn.Linear(text_latent_dim, latent_dim)
self.value = nn.Linear(text_latent_dim, latent_dim)
self.dropout = nn.Dropout(dropout)
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
def forward(self, x, xf, emb, src_mask, cond_type, **kwargs):
"""
x: B, T, D
xf: B, N, L
"""
B, T, D = x.shape
N = xf.shape[1]
H = self.num_heads
# B, T, D
query = self.query(self.norm(x)).view(B, T, H, -1)
# B, N, D
text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1)
key = self.key(self.text_norm(xf)).view(B, N, H, -1)
attention = torch.einsum('bnhl,bmhl->bnmh', query, key)
mask = text_cond_type.view(B, 1, -1, 1)
attention = attention + (1 - mask) * -1000000
attention = F.softmax(attention, dim=2)
value = (self.value(self.text_norm(xf)) * text_cond_type).view(B, N, H, -1)
y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D)
y = x + self.proj_out(y, emb)
return y
|