File size: 5,228 Bytes
a0d91d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils.stylization_block import StylizationBlock
from ..builder import ATTENTIONS


@ATTENTIONS.register_module()
class BaseMixedAttention(nn.Module):

    def __init__(self, latent_dim,
                       text_latent_dim,
                       num_heads,
                       dropout,
                       time_embed_dim):
        super().__init__()
        self.num_heads = num_heads

        self.norm = nn.LayerNorm(latent_dim)
        self.text_norm = nn.LayerNorm(text_latent_dim)
        
        self.query = nn.Linear(latent_dim, latent_dim)
        self.key_text = nn.Linear(text_latent_dim, latent_dim)
        self.value_text = nn.Linear(text_latent_dim, latent_dim)
        self.key_motion = nn.Linear(latent_dim, latent_dim)
        self.value_motion = nn.Linear(latent_dim, latent_dim)
        
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
    
    def forward(self, x, xf, emb, src_mask, cond_type, **kwargs):
        """
        x: B, T, D
        xf: B, N, L
        """
        B, T, D = x.shape
        N = xf.shape[1] + x.shape[1]
        H = self.num_heads
        # B, T, D
        query = self.query(self.norm(x)).view(B, T, H, -1)
        # B, N, D
        text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1)
        key = torch.cat((
            self.key_text(self.text_norm(xf)),
            self.key_motion(self.norm(x))
        ), dim=1).view(B, N, H, -1)
        
        attention = torch.einsum('bnhl,bmhl->bnmh', query, key)
        motion_mask = src_mask.view(B, 1, T, 1)
        text_mask = text_cond_type.view(B, 1, -1, 1)
        mask = torch.cat((text_mask, motion_mask), dim=2)
        attention = attention + (1 - mask) * -1000000
        attention = F.softmax(attention, dim=2)
        
        value = torch.cat((
            self.value_text(self.text_norm(xf)) * text_cond_type,
            self.value_motion(self.norm(x)) * src_mask,
        ), dim=1).view(B, N, H, -1)
        
        y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D)
        y = x + self.proj_out(y, emb)
        return y
    
    
@ATTENTIONS.register_module()
class BaseSelfAttention(nn.Module):

    def __init__(self, latent_dim,
                       num_heads,
                       dropout,
                       time_embed_dim):
        super().__init__()
        self.num_heads = num_heads

        self.norm = nn.LayerNorm(latent_dim)
        self.query = nn.Linear(latent_dim, latent_dim)
        self.key = nn.Linear(latent_dim, latent_dim)
        self.value = nn.Linear(latent_dim, latent_dim)
        
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
    
    def forward(self, x, emb, src_mask, **kwargs):
        """
        x: B, T, D
        """
        B, T, D = x.shape
        H = self.num_heads
        # B, T, D
        query = self.query(self.norm(x)).view(B, T, H, -1)
        # B, N, D
        key = self.key(self.norm(x)).view(B, T, H, -1)
        
        attention = torch.einsum('bnhl,bmhl->bnmh', query, key)
        mask = src_mask.view(B, 1, T, 1)
        attention = attention + (1 - mask) * -1000000
        attention = F.softmax(attention, dim=2)
        value = (self.value(self.norm(x)) * src_mask).view(B, T, H, -1)
        y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D)
        y = x + self.proj_out(y, emb)
        return y
    

@ATTENTIONS.register_module()
class BaseCrossAttention(nn.Module):

    def __init__(self, latent_dim,
                       text_latent_dim,
                       num_heads,
                       dropout,
                       time_embed_dim):
        super().__init__()
        self.num_heads = num_heads

        self.norm = nn.LayerNorm(latent_dim)
        self.text_norm = nn.LayerNorm(text_latent_dim)
        
        self.query = nn.Linear(latent_dim, latent_dim)
        self.key = nn.Linear(text_latent_dim, latent_dim)
        self.value = nn.Linear(text_latent_dim, latent_dim)
        
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
    
    def forward(self, x, xf, emb, src_mask, cond_type, **kwargs):
        """
        x: B, T, D
        xf: B, N, L
        """
        B, T, D = x.shape
        N = xf.shape[1]
        H = self.num_heads
        # B, T, D
        query = self.query(self.norm(x)).view(B, T, H, -1)
        # B, N, D
        text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1)
        key = self.key(self.text_norm(xf)).view(B, N, H, -1)
        attention = torch.einsum('bnhl,bmhl->bnmh', query, key)
        mask = text_cond_type.view(B, 1, -1, 1)
        attention = attention + (1 - mask) * -1000000
        attention = F.softmax(attention, dim=2)
        
        value = (self.value(self.text_norm(xf)) * text_cond_type).view(B, N, H, -1)
        y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D)
        y = x + self.proj_out(y, emb)
        return y