File size: 3,189 Bytes
a0d91d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils.stylization_block import StylizationBlock
from ..builder import ATTENTIONS


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


@ATTENTIONS.register_module()
class SemanticsModulatedAttention(nn.Module):

    def __init__(self, latent_dim,
                       text_latent_dim,
                       num_heads,
                       dropout,
                       time_embed_dim):
        super().__init__()
        self.num_heads = num_heads

        self.norm = nn.LayerNorm(latent_dim)
        self.text_norm = nn.LayerNorm(text_latent_dim)
        
        self.query = nn.Linear(latent_dim, latent_dim)
        self.key_text = nn.Linear(text_latent_dim, latent_dim)
        self.value_text = nn.Linear(text_latent_dim, latent_dim)
        self.key_motion = nn.Linear(latent_dim, latent_dim)
        self.value_motion = nn.Linear(latent_dim, latent_dim)
 
        self.retr_norm1 = nn.LayerNorm(2 * latent_dim)
        self.retr_norm2 = nn.LayerNorm(latent_dim)
        self.key_retr = nn.Linear(2 * latent_dim, latent_dim)
        self.value_retr = zero_module(nn.Linear(latent_dim, latent_dim))

        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
    
    def forward(self, x, xf, emb, src_mask, cond_type, re_dict=None):
        """
        x: B, T, D
        xf: B, N, L
        """
        B, T, D = x.shape
        re_motion = re_dict['re_motion']
        re_text = re_dict['re_text']
        re_mask = re_dict['re_mask']
        re_mask = re_mask.reshape(B, -1, 1)
        N = xf.shape[1] + x.shape[1] + re_motion.shape[1] * re_motion.shape[2]
        H = self.num_heads
        # B, T, D
        query = self.query(self.norm(x))
        # B, N, D
        text_cond_type = (cond_type % 10 > 0).float()
        retr_cond_type = (cond_type // 10 > 0).float()
        re_text = re_text.repeat(1, 1, re_motion.shape[2], 1)
        re_feat_key = torch.cat((re_motion, re_text), dim=-1).reshape(B, -1, 2 * D)
        key = torch.cat((
            self.key_text(self.text_norm(xf)) + (1 - text_cond_type) * -1000000,
            self.key_retr(self.retr_norm1(re_feat_key)) + (1 - retr_cond_type) * -1000000 + (1 - re_mask) * -1000000,
            self.key_motion(self.norm(x)) + (1 - src_mask) * -1000000
        ), dim=1)
        query = F.softmax(query.view(B, T, H, -1), dim=-1)
        key = F.softmax(key.view(B, N, H, -1), dim=1)
        # B, N, H, HD
        re_feat_value = re_motion.reshape(B, -1, D)
        value = torch.cat((
            self.value_text(self.text_norm(xf)) * text_cond_type,
            self.value_retr(self.retr_norm2(re_feat_value)) * retr_cond_type * re_mask,
            self.value_motion(self.norm(x)) * src_mask,
        ), dim=1).view(B, N, H, -1)
        # B, H, HD, HD
        attention = torch.einsum('bnhd,bnhl->bhdl', key, value)
        y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D)
        y = x + self.proj_out(y, emb)
        return y