Spaces:
Running
Running
File size: 9,748 Bytes
a0d91d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import torch
import torch.nn as nn
import numpy as np
import time
import math
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch.nn.functional as F
from ..builder import SUBMODULES
from mogen.models.utils.word_vectorizer import WordVectorizer
def init_weight(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.xavier_normal_(m.weight)
# m.bias.data.fill_(0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def reparameterize(mu, logvar):
s_var = logvar.mul(0.5).exp_()
eps = s_var.data.new(s_var.size()).normal_()
return eps.mul(s_var).add_(mu)
# batch_size, dimension and position
# output: (batch_size, dim)
def positional_encoding(batch_size, dim, pos):
assert batch_size == pos.shape[0]
positions_enc = np.array([
[pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)]
for j in range(batch_size)
], dtype=np.float32)
positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2])
positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2])
return torch.from_numpy(positions_enc).float()
def get_padding_mask(batch_size, seq_len, cap_lens):
cap_lens = cap_lens.data.tolist()
mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32)
for i, cap_len in enumerate(cap_lens):
mask_2d[i, :, :cap_len] = 0
return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone()
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=300):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
# pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, pos):
return self.pe[pos]
@SUBMODULES.register_module()
class T2MMotionEncoder(nn.Module):
def __init__(self,
input_size,
movement_hidden_size,
movement_latent_size,
motion_hidden_size,
motion_latent_size):
super().__init__()
self.movement_encoder = MovementConvEncoder(
input_size=input_size-4,
hidden_size=movement_hidden_size,
output_size=movement_latent_size)
self.motion_encoder = MotionEncoderBiGRUCo(
input_size=movement_latent_size,
hidden_size=motion_hidden_size,
output_size=motion_latent_size
)
def load_pretrained(self, ckpt_path):
checkpoint = torch.load(ckpt_path, map_location='cpu')
self.movement_encoder.load_state_dict(checkpoint['movement_encoder'])
self.motion_encoder.load_state_dict(checkpoint['motion_encoder'])
def forward(self, motion, motion_length, motion_mask):
motion = motion.detach().float()
sort_idx = np.argsort(motion_length.data.tolist())[::-1].copy()
rank_idx = np.empty_like(sort_idx)
rank_idx[sort_idx] = np.arange(len(motion_length))
motion = motion[sort_idx]
motion_length = motion_length[sort_idx]
movements = self.movement_encoder(motion[..., :-4]).detach()
m_lens = motion_length // 4
motion_embedding = self.motion_encoder(movements, m_lens)
motion_embedding_ordered = motion_embedding[rank_idx]
return motion_embedding_ordered
@SUBMODULES.register_module()
class T2MTextEncoder(nn.Module):
def __init__(self,
word_size,
pos_size,
hidden_size,
output_size,
max_text_len):
super().__init__()
self.text_encoder = TextEncoderBiGRUCo(
word_size=word_size,
pos_size=pos_size,
hidden_size=hidden_size,
output_size=output_size,
)
self.w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
self.max_text_len = max_text_len
def load_pretrained(self, ckpt_path):
checkpoint = torch.load(ckpt_path, map_location='cpu')
self.text_encoder.load_state_dict(checkpoint['text_encoder'])
def forward(self, text, token, device):
B = len(text)
pos_one_hot = []
word_emb = []
sent_len = []
for i in range(B):
tokens = token[i].split(" ")
if len(tokens) < self.max_text_len:
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
batch_sent_len = len(tokens)
tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - batch_sent_len)
else:
tokens = tokens[: self.max_text_len]
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
batch_sent_len = len(tokens)
sent_len.append(batch_sent_len)
batch_word_emb = []
batch_pos_one_hot = []
for cur_token in tokens:
cur_word_emb, cur_pos_one_hot = self.w_vectorizer[cur_token]
cur_word_emb = torch.from_numpy(cur_word_emb).float()
cur_pos_one_hot = torch.from_numpy(cur_pos_one_hot).float()
batch_word_emb.append(cur_word_emb)
batch_pos_one_hot.append(cur_pos_one_hot)
batch_word_emb = torch.stack(batch_word_emb, dim=0)
batch_pos_one_hot = torch.stack(batch_pos_one_hot, dim=0)
word_emb.append(batch_word_emb)
pos_one_hot.append(batch_pos_one_hot)
word_emb = torch.stack(word_emb, dim=0).to(device)
pos_one_hot = torch.stack(pos_one_hot, dim=0).to(device)
sent_len = torch.tensor(sent_len, dtype=torch.long).to(device)
text_embedding = self.text_encoder(word_emb, pos_one_hot, sent_len)
return text_embedding
class TextEncoderBiGRUCo(nn.Module):
def __init__(self, word_size, pos_size, hidden_size, output_size):
super(TextEncoderBiGRUCo, self).__init__()
self.pos_emb = nn.Linear(pos_size, word_size)
self.input_emb = nn.Linear(word_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
self.output_net = nn.Sequential(
nn.Linear(hidden_size * 2, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, output_size)
)
self.input_emb.apply(init_weight)
self.pos_emb.apply(init_weight)
self.output_net.apply(init_weight)
# self.linear2.apply(init_weight)
# self.batch_size = batch_size
self.hidden_size = hidden_size
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
# input(batch_size, seq_len, dim)
def forward(self, word_embs, pos_onehot, cap_lens):
num_samples = word_embs.shape[0]
pos_embs = self.pos_emb(pos_onehot)
inputs = word_embs + pos_embs
input_embs = self.input_emb(inputs)
hidden = self.hidden.repeat(1, num_samples, 1)
cap_lens = cap_lens.data.tolist()
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)
gru_seq, gru_last = self.gru(emb, hidden)
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
return self.output_net(gru_last)
class MovementConvEncoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MovementConvEncoder, self).__init__()
self.main = nn.Sequential(
nn.Conv1d(input_size, hidden_size, 4, 2, 1),
nn.Dropout(0.2, inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(hidden_size, output_size, 4, 2, 1),
nn.Dropout(0.2, inplace=True),
nn.LeakyReLU(0.2, inplace=True),
)
self.out_net = nn.Linear(output_size, output_size)
self.main.apply(init_weight)
self.out_net.apply(init_weight)
def forward(self, inputs):
inputs = inputs.permute(0, 2, 1)
outputs = self.main(inputs).permute(0, 2, 1)
# print(outputs.shape)
return self.out_net(outputs)
class MotionEncoderBiGRUCo(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MotionEncoderBiGRUCo, self).__init__()
self.input_emb = nn.Linear(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
self.output_net = nn.Sequential(
nn.Linear(hidden_size*2, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, output_size)
)
self.input_emb.apply(init_weight)
self.output_net.apply(init_weight)
self.hidden_size = hidden_size
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
# input(batch_size, seq_len, dim)
def forward(self, inputs, m_lens):
num_samples = inputs.shape[0]
input_embs = self.input_emb(inputs)
hidden = self.hidden.repeat(1, num_samples, 1)
cap_lens = m_lens.data.tolist()
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
gru_seq, gru_last = self.gru(emb, hidden)
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
return self.output_net(gru_last)
|