File size: 9,748 Bytes
a0d91d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
import torch.nn as nn
import numpy as np
import time
import math
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch.nn.functional as F
from ..builder import SUBMODULES

from mogen.models.utils.word_vectorizer import WordVectorizer


def init_weight(m):
    if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
        nn.init.xavier_normal_(m.weight)
        # m.bias.data.fill_(0.01)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
            

def reparameterize(mu, logvar):
    s_var = logvar.mul(0.5).exp_()
    eps = s_var.data.new(s_var.size()).normal_()
    return eps.mul(s_var).add_(mu)


# batch_size, dimension and position
# output: (batch_size, dim)
def positional_encoding(batch_size, dim, pos):
    assert batch_size == pos.shape[0]
    positions_enc = np.array([
        [pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)]
        for j in range(batch_size)
    ], dtype=np.float32)
    positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2])
    positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2])
    return torch.from_numpy(positions_enc).float()


def get_padding_mask(batch_size, seq_len, cap_lens):
    cap_lens = cap_lens.data.tolist()
    mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32)
    for i, cap_len in enumerate(cap_lens):
        mask_2d[i, :, :cap_len] = 0
    return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone()


class PositionalEncoding(nn.Module):

    def __init__(self, d_model, max_len=300):
        super(PositionalEncoding, self).__init__()

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        # pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, pos):
        return self.pe[pos]


@SUBMODULES.register_module()
class T2MMotionEncoder(nn.Module):
    
    def __init__(self,
                 input_size,
                 movement_hidden_size,
                 movement_latent_size,
                 motion_hidden_size,
                 motion_latent_size):
        super().__init__()
        self.movement_encoder = MovementConvEncoder(
            input_size=input_size-4,
            hidden_size=movement_hidden_size,
            output_size=movement_latent_size)
        self.motion_encoder = MotionEncoderBiGRUCo(
            input_size=movement_latent_size,
            hidden_size=motion_hidden_size,
            output_size=motion_latent_size
        )
        
    def load_pretrained(self, ckpt_path):
        checkpoint = torch.load(ckpt_path, map_location='cpu')
        self.movement_encoder.load_state_dict(checkpoint['movement_encoder'])
        self.motion_encoder.load_state_dict(checkpoint['motion_encoder'])
        
    def forward(self, motion, motion_length, motion_mask):
        motion = motion.detach().float()
        sort_idx = np.argsort(motion_length.data.tolist())[::-1].copy()
        rank_idx = np.empty_like(sort_idx)
        rank_idx[sort_idx] = np.arange(len(motion_length))
        motion = motion[sort_idx]
        motion_length = motion_length[sort_idx]
        
        movements = self.movement_encoder(motion[..., :-4]).detach()
        m_lens = motion_length // 4
        motion_embedding = self.motion_encoder(movements, m_lens)
        motion_embedding_ordered = motion_embedding[rank_idx]
        return motion_embedding_ordered


@SUBMODULES.register_module()
class T2MTextEncoder(nn.Module):
    
    def __init__(self,
                 word_size,
                 pos_size,
                 hidden_size,
                 output_size,
                 max_text_len):
        super().__init__()
        self.text_encoder = TextEncoderBiGRUCo(
            word_size=word_size,
            pos_size=pos_size,
            hidden_size=hidden_size,
            output_size=output_size,
        )
        self.w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
        self.max_text_len = max_text_len
        
    def load_pretrained(self, ckpt_path):
        checkpoint = torch.load(ckpt_path, map_location='cpu')
        self.text_encoder.load_state_dict(checkpoint['text_encoder'])
        
    def forward(self, text, token, device):
        B = len(text)
        pos_one_hot = []
        word_emb = []
        sent_len = []
        for i in range(B):
            tokens = token[i].split(" ")
            if len(tokens) < self.max_text_len:
                tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
                batch_sent_len = len(tokens)
                tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - batch_sent_len)
            else:
                tokens = tokens[: self.max_text_len]
                tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
                batch_sent_len = len(tokens)
            sent_len.append(batch_sent_len)
            batch_word_emb = []
            batch_pos_one_hot = []
            for cur_token in tokens:
                cur_word_emb, cur_pos_one_hot = self.w_vectorizer[cur_token]
                cur_word_emb = torch.from_numpy(cur_word_emb).float()
                cur_pos_one_hot = torch.from_numpy(cur_pos_one_hot).float()
                batch_word_emb.append(cur_word_emb)
                batch_pos_one_hot.append(cur_pos_one_hot)
            
            batch_word_emb = torch.stack(batch_word_emb, dim=0)
            batch_pos_one_hot = torch.stack(batch_pos_one_hot, dim=0)
            word_emb.append(batch_word_emb)
            pos_one_hot.append(batch_pos_one_hot)
        word_emb = torch.stack(word_emb, dim=0).to(device)
        pos_one_hot = torch.stack(pos_one_hot, dim=0).to(device)
        sent_len = torch.tensor(sent_len, dtype=torch.long).to(device)
        text_embedding = self.text_encoder(word_emb, pos_one_hot, sent_len)
        return text_embedding


class TextEncoderBiGRUCo(nn.Module):
    def __init__(self, word_size, pos_size, hidden_size, output_size):
        super(TextEncoderBiGRUCo, self).__init__()

        self.pos_emb = nn.Linear(pos_size, word_size)
        self.input_emb = nn.Linear(word_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
        self.output_net = nn.Sequential(
            nn.Linear(hidden_size * 2, hidden_size),
            nn.LayerNorm(hidden_size),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_size, output_size)
        )

        self.input_emb.apply(init_weight)
        self.pos_emb.apply(init_weight)
        self.output_net.apply(init_weight)
        # self.linear2.apply(init_weight)
        # self.batch_size = batch_size
        self.hidden_size = hidden_size
        self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))

    # input(batch_size, seq_len, dim)
    def forward(self, word_embs, pos_onehot, cap_lens):
        num_samples = word_embs.shape[0]

        pos_embs = self.pos_emb(pos_onehot)
        inputs = word_embs + pos_embs
        input_embs = self.input_emb(inputs)
        hidden = self.hidden.repeat(1, num_samples, 1)

        cap_lens = cap_lens.data.tolist()
        emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)

        gru_seq, gru_last = self.gru(emb, hidden)

        gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)

        return self.output_net(gru_last)


class MovementConvEncoder(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(MovementConvEncoder, self).__init__()
        self.main = nn.Sequential(
            nn.Conv1d(input_size, hidden_size, 4, 2, 1),
            nn.Dropout(0.2, inplace=True),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv1d(hidden_size, output_size, 4, 2, 1),
            nn.Dropout(0.2, inplace=True),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.out_net = nn.Linear(output_size, output_size)
        self.main.apply(init_weight)
        self.out_net.apply(init_weight)

    def forward(self, inputs):
        inputs = inputs.permute(0, 2, 1)
        outputs = self.main(inputs).permute(0, 2, 1)
        # print(outputs.shape)
        return self.out_net(outputs)


class MotionEncoderBiGRUCo(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(MotionEncoderBiGRUCo, self).__init__()

        self.input_emb = nn.Linear(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
        self.output_net = nn.Sequential(
            nn.Linear(hidden_size*2, hidden_size),
            nn.LayerNorm(hidden_size),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_size, output_size)
        )

        self.input_emb.apply(init_weight)
        self.output_net.apply(init_weight)
        self.hidden_size = hidden_size
        self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))

    # input(batch_size, seq_len, dim)
    def forward(self, inputs, m_lens):
        num_samples = inputs.shape[0]

        input_embs = self.input_emb(inputs)
        hidden = self.hidden.repeat(1, num_samples, 1)

        cap_lens = m_lens.data.tolist()
        emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)

        gru_seq, gru_last = self.gru(emb, hidden)

        gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)

        return self.output_net(gru_last)