File size: 9,063 Bytes
a0d91d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from abc import ABCMeta, abstractmethod
from cv2 import norm
import torch
from torch import layer_norm, nn
import torch.nn.functional as F
from mmcv.runner import BaseModule
import numpy as np

from ..builder import SUBMODULES, build_attention
from .position_encoding import SinusoidalPositionalEncoding, LearnedPositionalEncoding
from ..utils.stylization_block import StylizationBlock
import math
import clip


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


def set_requires_grad(nets, requires_grad=False):
    """Set requies_grad for all the networks.

    Args:
        nets (nn.Module | list[nn.Module]): A list of networks or a single
            network.
        requires_grad (bool): Whether the networks require gradients or not
    """
    if not isinstance(nets, list):
        nets = [nets]
    for net in nets:
        if net is not None:
            for param in net.parameters():
                param.requires_grad = requires_grad


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class FFN(nn.Module):

    def __init__(self, latent_dim, ffn_dim, dropout, time_embed_dim):
        super().__init__()
        self.linear1 = nn.Linear(latent_dim, ffn_dim)
        self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
        self.activation = nn.GELU()
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)

    def forward(self, x, emb, **kwargs):
        y = self.linear2(self.dropout(self.activation(self.linear1(x))))
        y = x + self.proj_out(y, emb)
        return y
    

class DecoderLayer(nn.Module):

    def __init__(self,
                 sa_block_cfg=None,
                 ca_block_cfg=None,
                 ffn_cfg=None):
        super().__init__()
        self.sa_block = build_attention(sa_block_cfg)
        self.ca_block = build_attention(ca_block_cfg)
        self.ffn = FFN(**ffn_cfg)

    def forward(self, **kwargs):
        if self.sa_block is not None:
            x = self.sa_block(**kwargs)
            kwargs.update({'x': x})
        if self.ca_block is not None:
            x = self.ca_block(**kwargs)
            kwargs.update({'x': x})
        if self.ffn is not None:
            x = self.ffn(**kwargs)
        return x


class DiffusionTransformer(BaseModule, metaclass=ABCMeta):
    def __init__(self,
                 input_feats,
                 max_seq_len=240,
                 latent_dim=512,
                 time_embed_dim=2048,
                 num_layers=8,
                 sa_block_cfg=None,
                 ca_block_cfg=None,
                 ffn_cfg=None,
                 text_encoder=None,
                 use_cache_for_text=False,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.input_feats = input_feats
        self.max_seq_len = max_seq_len
        self.latent_dim = latent_dim
        self.num_layers = num_layers
        self.time_embed_dim = time_embed_dim
        self.sequence_embedding = nn.Parameter(torch.randn(max_seq_len, latent_dim))
        
        self.use_cache_for_text = use_cache_for_text
        if use_cache_for_text:
            self.text_cache = {}
        self.build_text_encoder(text_encoder)

        # Input Embedding
        self.joint_embed = nn.Linear(self.input_feats, self.latent_dim)

        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, self.time_embed_dim),
            nn.SiLU(),
            nn.Linear(self.time_embed_dim, self.time_embed_dim),
        )
        self.build_temporal_blocks(sa_block_cfg, ca_block_cfg, ffn_cfg)
        
        # Output Module
        self.out = zero_module(nn.Linear(self.latent_dim, self.input_feats))
        
    def build_temporal_blocks(self, sa_block_cfg, ca_block_cfg, ffn_cfg):
        self.temporal_decoder_blocks = nn.ModuleList()
        for i in range(self.num_layers):
            self.temporal_decoder_blocks.append(
                DecoderLayer(
                    sa_block_cfg=sa_block_cfg,
                    ca_block_cfg=ca_block_cfg,
                    ffn_cfg=ffn_cfg
                )
            )
        
    def build_text_encoder(self, text_encoder):
        
        text_latent_dim = text_encoder['latent_dim']
        num_text_layers = text_encoder.get('num_layers', 0)
        text_ff_size = text_encoder.get('ff_size', 2048)
        pretrained_model = text_encoder['pretrained_model']
        text_num_heads =  text_encoder.get('num_heads', 4)
        dropout = text_encoder.get('dropout', 0)
        activation = text_encoder.get('activation', 'gelu')
        self.use_text_proj = text_encoder.get('use_text_proj', False)

        if pretrained_model == 'clip':
            self.clip, _ = clip.load('ViT-B/32', "cpu")
            set_requires_grad(self.clip, False)
            if text_latent_dim != 512:
                self.text_pre_proj = nn.Linear(512, text_latent_dim)
            else:
                self.text_pre_proj = nn.Identity()
        else:
            raise NotImplementedError()
        
        if num_text_layers > 0:
            self.use_text_finetune = True
            textTransEncoderLayer = nn.TransformerEncoderLayer(
                d_model=text_latent_dim,
                nhead=text_num_heads,
                dim_feedforward=text_ff_size,
                dropout=dropout,
                activation=activation)
            self.textTransEncoder = nn.TransformerEncoder(
                textTransEncoderLayer,
                num_layers=num_text_layers)
        else:
            self.use_text_finetune = False
        self.text_ln = nn.LayerNorm(text_latent_dim)
        if self.use_text_proj:
            self.text_proj = nn.Sequential(
                nn.Linear(text_latent_dim, self.time_embed_dim)
            )
        
    def encode_text(self, text, clip_feat, device):
        B = len(text)
        text = clip.tokenize(text, truncate=True).to(device)
        if clip_feat is None:
            with torch.no_grad():
                x = self.clip.token_embedding(text).type(self.clip.dtype)  # [batch_size, n_ctx, d_model]

                x = x + self.clip.positional_embedding.type(self.clip.dtype)
                x = x.permute(1, 0, 2)  # NLD -> LND
                x = self.clip.transformer(x)
                x = self.clip.ln_final(x).type(self.clip.dtype)
        else:
            x = clip_feat.type(self.clip.dtype).to(device).permute(1, 0, 2)

        # T, B, D
        x = self.text_pre_proj(x)
        xf_out = self.textTransEncoder(x)
        xf_out = self.text_ln(xf_out)
        if self.use_text_proj:
            xf_proj = self.text_proj(xf_out[text.argmax(dim=-1), torch.arange(xf_out.shape[1])])
            # B, T, D
            xf_out = xf_out.permute(1, 0, 2)
            return xf_proj, xf_out
        else:
            xf_out = xf_out.permute(1, 0, 2)
            return xf_out

    @abstractmethod
    def get_precompute_condition(self, **kwargs):
        pass
    
    @abstractmethod
    def forward_train(self, h, src_mask, emb, **kwargs):
        pass
    
    @abstractmethod
    def forward_test(self, h, src_mask, emb, **kwargs):
        pass

    def forward(self, motion, timesteps, motion_mask=None, **kwargs):
        """
        motion: B, T, D
        """
        B, T = motion.shape[0], motion.shape[1]
        conditions = self.get_precompute_condition(device=motion.device, **kwargs)
        if len(motion_mask.shape) == 2:
            src_mask = motion_mask.clone().unsqueeze(-1)
        else:
            src_mask = motion_mask.clone()

        if self.use_text_proj:
            emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) + conditions['xf_proj']
        else:
            emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim))
        # B, T, latent_dim
        h = self.joint_embed(motion)
        h = h + self.sequence_embedding.unsqueeze(0)[:, :T, :]

        if self.training:
            return self.forward_train(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)
        else:
            return self.forward_test(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)