Spaces:
Running
Running
File size: 9,063 Bytes
a0d91d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
from abc import ABCMeta, abstractmethod
from cv2 import norm
import torch
from torch import layer_norm, nn
import torch.nn.functional as F
from mmcv.runner import BaseModule
import numpy as np
from ..builder import SUBMODULES, build_attention
from .position_encoding import SinusoidalPositionalEncoding, LearnedPositionalEncoding
from ..utils.stylization_block import StylizationBlock
import math
import clip
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad for all the networks.
Args:
nets (nn.Module | list[nn.Module]): A list of networks or a single
network.
requires_grad (bool): Whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class FFN(nn.Module):
def __init__(self, latent_dim, ffn_dim, dropout, time_embed_dim):
super().__init__()
self.linear1 = nn.Linear(latent_dim, ffn_dim)
self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
self.activation = nn.GELU()
self.dropout = nn.Dropout(dropout)
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
def forward(self, x, emb, **kwargs):
y = self.linear2(self.dropout(self.activation(self.linear1(x))))
y = x + self.proj_out(y, emb)
return y
class DecoderLayer(nn.Module):
def __init__(self,
sa_block_cfg=None,
ca_block_cfg=None,
ffn_cfg=None):
super().__init__()
self.sa_block = build_attention(sa_block_cfg)
self.ca_block = build_attention(ca_block_cfg)
self.ffn = FFN(**ffn_cfg)
def forward(self, **kwargs):
if self.sa_block is not None:
x = self.sa_block(**kwargs)
kwargs.update({'x': x})
if self.ca_block is not None:
x = self.ca_block(**kwargs)
kwargs.update({'x': x})
if self.ffn is not None:
x = self.ffn(**kwargs)
return x
class DiffusionTransformer(BaseModule, metaclass=ABCMeta):
def __init__(self,
input_feats,
max_seq_len=240,
latent_dim=512,
time_embed_dim=2048,
num_layers=8,
sa_block_cfg=None,
ca_block_cfg=None,
ffn_cfg=None,
text_encoder=None,
use_cache_for_text=False,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.input_feats = input_feats
self.max_seq_len = max_seq_len
self.latent_dim = latent_dim
self.num_layers = num_layers
self.time_embed_dim = time_embed_dim
self.sequence_embedding = nn.Parameter(torch.randn(max_seq_len, latent_dim))
self.use_cache_for_text = use_cache_for_text
if use_cache_for_text:
self.text_cache = {}
self.build_text_encoder(text_encoder)
# Input Embedding
self.joint_embed = nn.Linear(self.input_feats, self.latent_dim)
self.time_embed = nn.Sequential(
nn.Linear(self.latent_dim, self.time_embed_dim),
nn.SiLU(),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
self.build_temporal_blocks(sa_block_cfg, ca_block_cfg, ffn_cfg)
# Output Module
self.out = zero_module(nn.Linear(self.latent_dim, self.input_feats))
def build_temporal_blocks(self, sa_block_cfg, ca_block_cfg, ffn_cfg):
self.temporal_decoder_blocks = nn.ModuleList()
for i in range(self.num_layers):
self.temporal_decoder_blocks.append(
DecoderLayer(
sa_block_cfg=sa_block_cfg,
ca_block_cfg=ca_block_cfg,
ffn_cfg=ffn_cfg
)
)
def build_text_encoder(self, text_encoder):
text_latent_dim = text_encoder['latent_dim']
num_text_layers = text_encoder.get('num_layers', 0)
text_ff_size = text_encoder.get('ff_size', 2048)
pretrained_model = text_encoder['pretrained_model']
text_num_heads = text_encoder.get('num_heads', 4)
dropout = text_encoder.get('dropout', 0)
activation = text_encoder.get('activation', 'gelu')
self.use_text_proj = text_encoder.get('use_text_proj', False)
if pretrained_model == 'clip':
self.clip, _ = clip.load('ViT-B/32', "cpu")
set_requires_grad(self.clip, False)
if text_latent_dim != 512:
self.text_pre_proj = nn.Linear(512, text_latent_dim)
else:
self.text_pre_proj = nn.Identity()
else:
raise NotImplementedError()
if num_text_layers > 0:
self.use_text_finetune = True
textTransEncoderLayer = nn.TransformerEncoderLayer(
d_model=text_latent_dim,
nhead=text_num_heads,
dim_feedforward=text_ff_size,
dropout=dropout,
activation=activation)
self.textTransEncoder = nn.TransformerEncoder(
textTransEncoderLayer,
num_layers=num_text_layers)
else:
self.use_text_finetune = False
self.text_ln = nn.LayerNorm(text_latent_dim)
if self.use_text_proj:
self.text_proj = nn.Sequential(
nn.Linear(text_latent_dim, self.time_embed_dim)
)
def encode_text(self, text, clip_feat, device):
B = len(text)
text = clip.tokenize(text, truncate=True).to(device)
if clip_feat is None:
with torch.no_grad():
x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model]
x = x + self.clip.positional_embedding.type(self.clip.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.transformer(x)
x = self.clip.ln_final(x).type(self.clip.dtype)
else:
x = clip_feat.type(self.clip.dtype).to(device).permute(1, 0, 2)
# T, B, D
x = self.text_pre_proj(x)
xf_out = self.textTransEncoder(x)
xf_out = self.text_ln(xf_out)
if self.use_text_proj:
xf_proj = self.text_proj(xf_out[text.argmax(dim=-1), torch.arange(xf_out.shape[1])])
# B, T, D
xf_out = xf_out.permute(1, 0, 2)
return xf_proj, xf_out
else:
xf_out = xf_out.permute(1, 0, 2)
return xf_out
@abstractmethod
def get_precompute_condition(self, **kwargs):
pass
@abstractmethod
def forward_train(self, h, src_mask, emb, **kwargs):
pass
@abstractmethod
def forward_test(self, h, src_mask, emb, **kwargs):
pass
def forward(self, motion, timesteps, motion_mask=None, **kwargs):
"""
motion: B, T, D
"""
B, T = motion.shape[0], motion.shape[1]
conditions = self.get_precompute_condition(device=motion.device, **kwargs)
if len(motion_mask.shape) == 2:
src_mask = motion_mask.clone().unsqueeze(-1)
else:
src_mask = motion_mask.clone()
if self.use_text_proj:
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) + conditions['xf_proj']
else:
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim))
# B, T, latent_dim
h = self.joint_embed(motion)
h = h + self.sequence_embedding.unsqueeze(0)[:, :T, :]
if self.training:
return self.forward_train(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)
else:
return self.forward_test(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)
|