Spaces:
Running
Running
File size: 13,879 Bytes
a0d91d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
from cv2 import norm
import torch
import torch.nn.functional as F
from torch import layer_norm, nn
import numpy as np
import clip
import random
import math
from ..builder import SUBMODULES, build_attention
from .diffusion_transformer import DiffusionTransformer
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad for all the networks.
Args:
nets (nn.Module | list[nn.Module]): A list of networks or a single
network.
requires_grad (bool): Whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
class FFN(nn.Module):
def __init__(self, latent_dim, ffn_dim, dropout):
super().__init__()
self.linear1 = nn.Linear(latent_dim, ffn_dim)
self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
self.activation = nn.GELU()
self.dropout = nn.Dropout(dropout)
def forward(self, x, **kwargs):
y = self.linear2(self.dropout(self.activation(self.linear1(x))))
y = x + y
return y
class EncoderLayer(nn.Module):
def __init__(self,
sa_block_cfg=None,
ca_block_cfg=None,
ffn_cfg=None):
super().__init__()
self.sa_block = build_attention(sa_block_cfg)
self.ffn = FFN(**ffn_cfg)
def forward(self, **kwargs):
if self.sa_block is not None:
x = self.sa_block(**kwargs)
kwargs.update({'x': x})
if self.ffn is not None:
x = self.ffn(**kwargs)
return x
class RetrievalDatabase(nn.Module):
def __init__(self,
num_retrieval=None,
topk=None,
retrieval_file=None,
latent_dim=512,
output_dim=512,
num_layers=2,
num_motion_layers=4,
kinematic_coef=0.1,
max_seq_len=196,
num_heads=8,
ff_size=1024,
stride=4,
sa_block_cfg=None,
ffn_cfg=None,
dropout=0):
super().__init__()
self.num_retrieval = num_retrieval
self.topk = topk
self.latent_dim = latent_dim
self.stride = stride
self.kinematic_coef = kinematic_coef
self.num_layers = num_layers
self.num_motion_layers = num_motion_layers
self.max_seq_len = max_seq_len
data = np.load(retrieval_file)
self.text_features = torch.Tensor(data['text_features'])
self.captions = data['captions']
self.motions = data['motions']
self.m_lengths = data['m_lengths']
self.clip_seq_features = data['clip_seq_features']
self.train_indexes = data.get('train_indexes', None)
self.test_indexes = data.get('test_indexes', None)
self.latent_dim = latent_dim
self.output_dim = output_dim
self.motion_proj = nn.Linear(self.motions.shape[-1], self.latent_dim)
self.motion_pos_embedding = nn.Parameter(torch.randn(max_seq_len, self.latent_dim))
self.motion_encoder_blocks = nn.ModuleList()
for i in range(num_motion_layers):
self.motion_encoder_blocks.append(
EncoderLayer(
sa_block_cfg=sa_block_cfg,
ffn_cfg=ffn_cfg
)
)
TransEncoderLayer = nn.TransformerEncoderLayer(
d_model=self.latent_dim,
nhead=num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation="gelu")
self.text_encoder = nn.TransformerEncoder(
TransEncoderLayer,
num_layers=num_layers)
self.results = {}
def extract_text_feature(self, text, clip_model, device):
text = clip.tokenize([text], truncate=True).to(device)
with torch.no_grad():
text_features = clip_model.encode_text(text)
return text_features
def encode_text(self, text, device):
with torch.no_grad():
text = clip.tokenize(text, truncate=True).to(device)
x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model]
x = x + self.clip.positional_embedding.type(self.clip.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.transformer(x)
x = self.clip.ln_final(x).type(self.clip.dtype)
# B, T, D
xf_out = x.permute(1, 0, 2)
return xf_out
def retrieve(self, caption, length, clip_model, device, idx=None):
if self.training and self.train_indexes is not None and idx is not None:
idx = idx.item()
indexes = self.train_indexes[idx]
data = []
cnt = 0
for retr_idx in indexes:
if retr_idx != idx:
data.append(retr_idx)
cnt += 1
if cnt == self.topk:
break
random.shuffle(data)
return data[:self.num_retrieval]
elif not self.training and self.test_indexes is not None and idx is not None:
idx = idx.item()
indexes = self.test_indexes[idx]
data = []
cnt = 0
for retr_idx in indexes:
data.append(retr_idx)
cnt += 1
if cnt == self.topk:
break
# random.shuffle(data)
return data[:self.num_retrieval]
else:
value = hash(caption)
if value in self.results:
return self.results[value]
text_feature = self.extract_text_feature(caption, clip_model, device)
rel_length = torch.LongTensor(self.m_lengths).to(device)
rel_length = torch.abs(rel_length - length) / torch.clamp(rel_length, min=length)
semantic_score = F.cosine_similarity(self.text_features.to(device), text_feature)
kinematic_score = torch.exp(-rel_length * self.kinematic_coef)
score = semantic_score * kinematic_score
indexes = torch.argsort(score, descending=True)
data = []
cnt = 0
for idx in indexes:
caption, motion, m_length = self.captions[idx], self.motions[idx], self.m_lengths[idx]
if not self.training or m_length != length:
cnt += 1
data.append(idx.item())
if cnt == self.num_retrieval:
self.results[value] = data
return data
assert False
def generate_src_mask(self, T, length):
B = len(length)
src_mask = torch.ones(B, T)
for i in range(B):
for j in range(length[i], T):
src_mask[i, j] = 0
return src_mask
def forward(self, captions, lengths, clip_model, device, idx=None):
B = len(captions)
all_indexes = []
for b_ix in range(B):
length = int(lengths[b_ix])
if idx is None:
batch_indexes = self.retrieve(captions[b_ix], length, clip_model, device)
else:
batch_indexes = self.retrieve(captions[b_ix], length, clip_model, device, idx[b_ix])
all_indexes.extend(batch_indexes)
all_indexes = np.array(all_indexes)
N = all_indexes.shape[0]
all_motions = torch.Tensor(self.motions[all_indexes]).to(device)
all_m_lengths = torch.Tensor(self.m_lengths[all_indexes]).long()
all_captions = self.captions[all_indexes].tolist()
T = all_motions.shape[1]
src_mask = self.generate_src_mask(T, all_m_lengths).to(device)
raw_src_mask = src_mask.clone()
re_motion = self.motion_proj(all_motions) + self.motion_pos_embedding.unsqueeze(0)
for module in self.motion_encoder_blocks:
re_motion = module(x=re_motion, src_mask=src_mask.unsqueeze(-1))
re_motion = re_motion.view(B, self.num_retrieval, T, -1).contiguous()
# stride
re_motion = re_motion[:, :, ::self.stride, :].contiguous()
src_mask = src_mask[:, ::self.stride].contiguous()
src_mask = src_mask.view(B, self.num_retrieval, -1).contiguous()
T = 77
all_text_seq_features = torch.Tensor(self.clip_seq_features[all_indexes]).to(device)
all_text_seq_features = all_text_seq_features.permute(1, 0, 2)
re_text = self.text_encoder(all_text_seq_features)
re_text = re_text.permute(1, 0, 2).view(B, self.num_retrieval, T, -1).contiguous()
re_text = re_text[:, :, -1:, :].contiguous()
# T = re_motion.shape[2]
# re_feat = re_feat.view(B, self.num_retrieval * T, -1).contiguous()
re_dict = dict(
re_text=re_text,
re_motion=re_motion,
re_mask=src_mask,
raw_motion=all_motions,
raw_motion_length=all_m_lengths,
raw_motion_mask=raw_src_mask)
return re_dict
@SUBMODULES.register_module()
class ReMoDiffuseTransformer(DiffusionTransformer):
def __init__(self,
retrieval_cfg=None,
scale_func_cfg=None,
**kwargs):
super().__init__(**kwargs)
self.database = RetrievalDatabase(**retrieval_cfg)
self.scale_func_cfg = scale_func_cfg
def scale_func(self, timestep):
coarse_scale = self.scale_func_cfg['coarse_scale']
w = (1 - (1000 - timestep) / 1000) * coarse_scale + 1
if timestep > 100:
if random.randint(0, 1) == 0:
output = {
'both_coef': w,
'text_coef': 0,
'retr_coef': 1 - w,
'none_coef': 0
}
else:
output = {
'both_coef': 0,
'text_coef': w,
'retr_coef': 0,
'none_coef': 1 - w
}
else:
both_coef = self.scale_func_cfg['both_coef']
text_coef = self.scale_func_cfg['text_coef']
retr_coef = self.scale_func_cfg['retr_coef']
none_coef = 1 - both_coef - text_coef - retr_coef
output = {
'both_coef': both_coef,
'text_coef': text_coef,
'retr_coef': retr_coef,
'none_coef': none_coef
}
return output
def get_precompute_condition(self,
text=None,
motion_length=None,
xf_out=None,
re_dict=None,
device=None,
sample_idx=None,
clip_feat=None,
**kwargs):
if xf_out is None:
xf_out = self.encode_text(text, clip_feat, device)
output = {'xf_out': xf_out}
if re_dict is None:
re_dict = self.database(text, motion_length, self.clip, device, idx=sample_idx)
output['re_dict'] = re_dict
return output
def post_process(self, motion):
return motion
def forward_train(self, h=None, src_mask=None, emb=None, xf_out=None, re_dict=None, **kwargs):
B, T = h.shape[0], h.shape[1]
cond_type = torch.randint(0, 100, size=(B, 1, 1)).to(h.device)
for module in self.temporal_decoder_blocks:
h = module(x=h, xf=xf_out, emb=emb, src_mask=src_mask, cond_type=cond_type, re_dict=re_dict)
output = self.out(h).view(B, T, -1).contiguous()
return output
def forward_test(self, h=None, src_mask=None, emb=None, xf_out=None, re_dict=None, timesteps=None, **kwargs):
B, T = h.shape[0], h.shape[1]
both_cond_type = torch.zeros(B, 1, 1).to(h.device) + 99
text_cond_type = torch.zeros(B, 1, 1).to(h.device) + 1
retr_cond_type = torch.zeros(B, 1, 1).to(h.device) + 10
none_cond_type = torch.zeros(B, 1, 1).to(h.device)
all_cond_type = torch.cat((
both_cond_type, text_cond_type, retr_cond_type, none_cond_type
), dim=0)
h = h.repeat(4, 1, 1)
xf_out = xf_out.repeat(4, 1, 1)
emb = emb.repeat(4, 1)
src_mask = src_mask.repeat(4, 1, 1)
if re_dict['re_motion'].shape[0] != h.shape[0]:
re_dict['re_motion'] = re_dict['re_motion'].repeat(4, 1, 1, 1)
re_dict['re_text'] = re_dict['re_text'].repeat(4, 1, 1, 1)
re_dict['re_mask'] = re_dict['re_mask'].repeat(4, 1, 1)
for module in self.temporal_decoder_blocks:
h = module(x=h, xf=xf_out, emb=emb, src_mask=src_mask, cond_type=all_cond_type, re_dict=re_dict)
out = self.out(h).view(4 * B, T, -1).contiguous()
out_both = out[:B].contiguous()
out_text = out[B: 2 * B].contiguous()
out_retr = out[2 * B: 3 * B].contiguous()
out_none = out[3 * B:].contiguous()
coef_cfg = self.scale_func(int(timesteps[0]))
both_coef = coef_cfg['both_coef']
text_coef = coef_cfg['text_coef']
retr_coef = coef_cfg['retr_coef']
none_coef = coef_cfg['none_coef']
output = out_both * both_coef + out_text * text_coef + out_retr * retr_coef + out_none * none_coef
return output |