File size: 13,879 Bytes
a0d91d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from cv2 import norm
import torch
import torch.nn.functional as F
from torch import layer_norm, nn
import numpy as np
import clip
import random
import math

from ..builder import SUBMODULES, build_attention
from .diffusion_transformer import DiffusionTransformer


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def set_requires_grad(nets, requires_grad=False):
    """Set requies_grad for all the networks.

    Args:
        nets (nn.Module | list[nn.Module]): A list of networks or a single
            network.
        requires_grad (bool): Whether the networks require gradients or not
    """
    if not isinstance(nets, list):
        nets = [nets]
    for net in nets:
        if net is not None:
            for param in net.parameters():
                param.requires_grad = requires_grad
                

class FFN(nn.Module):

    def __init__(self, latent_dim, ffn_dim, dropout):
        super().__init__()
        self.linear1 = nn.Linear(latent_dim, ffn_dim)
        self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
        self.activation = nn.GELU()
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, **kwargs):
        y = self.linear2(self.dropout(self.activation(self.linear1(x))))
        y = x + y
        return y


class EncoderLayer(nn.Module):

    def __init__(self,
                 sa_block_cfg=None,
                 ca_block_cfg=None,
                 ffn_cfg=None):
        super().__init__()
        self.sa_block = build_attention(sa_block_cfg)
        self.ffn = FFN(**ffn_cfg)

    def forward(self, **kwargs):
        if self.sa_block is not None:
            x = self.sa_block(**kwargs)
            kwargs.update({'x': x})
        if self.ffn is not None:
            x = self.ffn(**kwargs)
        return x


class RetrievalDatabase(nn.Module):

    def __init__(self,
                 num_retrieval=None,
                 topk=None,
                 retrieval_file=None,
                 latent_dim=512,
                 output_dim=512,
                 num_layers=2,
                 num_motion_layers=4,
                 kinematic_coef=0.1,
                 max_seq_len=196,
                 num_heads=8,
                 ff_size=1024,
                 stride=4,
                 sa_block_cfg=None,
                 ffn_cfg=None,
                 dropout=0):
        super().__init__()
        self.num_retrieval = num_retrieval
        self.topk = topk
        self.latent_dim = latent_dim
        self.stride = stride
        self.kinematic_coef = kinematic_coef
        self.num_layers = num_layers
        self.num_motion_layers = num_motion_layers
        self.max_seq_len = max_seq_len
        data = np.load(retrieval_file)
        self.text_features = torch.Tensor(data['text_features'])
        self.captions = data['captions']
        self.motions = data['motions']
        self.m_lengths = data['m_lengths']
        self.clip_seq_features = data['clip_seq_features']
        self.train_indexes = data.get('train_indexes', None)
        self.test_indexes = data.get('test_indexes', None)

        self.latent_dim = latent_dim
        self.output_dim = output_dim
        self.motion_proj = nn.Linear(self.motions.shape[-1], self.latent_dim)
        self.motion_pos_embedding = nn.Parameter(torch.randn(max_seq_len, self.latent_dim))
        self.motion_encoder_blocks = nn.ModuleList()
        for i in range(num_motion_layers):
            self.motion_encoder_blocks.append(
                EncoderLayer(
                    sa_block_cfg=sa_block_cfg,
                    ffn_cfg=ffn_cfg
                )
            )
        TransEncoderLayer = nn.TransformerEncoderLayer(
            d_model=self.latent_dim,
            nhead=num_heads,
            dim_feedforward=ff_size,
            dropout=dropout,
            activation="gelu")
        self.text_encoder = nn.TransformerEncoder(
            TransEncoderLayer,
            num_layers=num_layers)
        self.results = {}

    def extract_text_feature(self, text, clip_model, device):
        text = clip.tokenize([text], truncate=True).to(device)
        with torch.no_grad():
            text_features = clip_model.encode_text(text)
        return text_features
    
    def encode_text(self, text, device):
        with torch.no_grad():
            text = clip.tokenize(text, truncate=True).to(device)
            x = self.clip.token_embedding(text).type(self.clip.dtype)  # [batch_size, n_ctx, d_model]

            x = x + self.clip.positional_embedding.type(self.clip.dtype)
            x = x.permute(1, 0, 2)  # NLD -> LND
            x = self.clip.transformer(x)
            x = self.clip.ln_final(x).type(self.clip.dtype)

        # B, T, D
        xf_out = x.permute(1, 0, 2)
        return xf_out

    def retrieve(self, caption, length, clip_model, device, idx=None):
        if self.training and self.train_indexes is not None and idx is not None:
            idx = idx.item()
            indexes = self.train_indexes[idx]
            data = []
            cnt = 0
            for retr_idx in indexes:
                if retr_idx != idx:
                    data.append(retr_idx)
                    cnt += 1
                    if cnt == self.topk:
                        break
            random.shuffle(data)
            return data[:self.num_retrieval]
        
        elif not self.training and self.test_indexes is not None and idx is not None:
            idx = idx.item()
            indexes = self.test_indexes[idx]
            data = []
            cnt = 0
            for retr_idx in indexes:
                data.append(retr_idx)
                cnt += 1
                if cnt == self.topk:
                    break
            # random.shuffle(data)
            return data[:self.num_retrieval]
        else:
            value = hash(caption)
            if value in self.results:
                return self.results[value]
            text_feature = self.extract_text_feature(caption, clip_model, device)
            
            rel_length = torch.LongTensor(self.m_lengths).to(device)
            rel_length = torch.abs(rel_length - length) / torch.clamp(rel_length, min=length)
            semantic_score = F.cosine_similarity(self.text_features.to(device), text_feature)
            kinematic_score = torch.exp(-rel_length * self.kinematic_coef)
            score = semantic_score * kinematic_score
            indexes = torch.argsort(score, descending=True)
            data = []
            cnt = 0
            for idx in indexes:
                caption, motion, m_length = self.captions[idx], self.motions[idx], self.m_lengths[idx]
                if not self.training or m_length != length:
                    cnt += 1
                    data.append(idx.item())
                    if cnt == self.num_retrieval:
                        self.results[value] = data
                        return data
        assert False

    def generate_src_mask(self, T, length):
        B = len(length)
        src_mask = torch.ones(B, T)
        for i in range(B):
            for j in range(length[i], T):
                src_mask[i, j] = 0
        return src_mask

    def forward(self, captions, lengths, clip_model, device, idx=None):
        B = len(captions)
        all_indexes = []
        for b_ix in range(B):
            length = int(lengths[b_ix])
            if idx is None:
                batch_indexes = self.retrieve(captions[b_ix], length, clip_model, device)
            else:
                batch_indexes = self.retrieve(captions[b_ix], length, clip_model, device, idx[b_ix])
            all_indexes.extend(batch_indexes)
        all_indexes = np.array(all_indexes)
        N = all_indexes.shape[0]
        all_motions = torch.Tensor(self.motions[all_indexes]).to(device)
        all_m_lengths = torch.Tensor(self.m_lengths[all_indexes]).long()
        all_captions = self.captions[all_indexes].tolist()
            
        T = all_motions.shape[1]
        src_mask = self.generate_src_mask(T, all_m_lengths).to(device)
        raw_src_mask = src_mask.clone()
        re_motion = self.motion_proj(all_motions) + self.motion_pos_embedding.unsqueeze(0)
        for module in self.motion_encoder_blocks:
            re_motion = module(x=re_motion, src_mask=src_mask.unsqueeze(-1))
        re_motion = re_motion.view(B, self.num_retrieval, T, -1).contiguous()
        # stride
        re_motion = re_motion[:, :, ::self.stride, :].contiguous()
        
        src_mask = src_mask[:, ::self.stride].contiguous()
        src_mask = src_mask.view(B, self.num_retrieval, -1).contiguous()

        T = 77
        all_text_seq_features = torch.Tensor(self.clip_seq_features[all_indexes]).to(device)
        all_text_seq_features = all_text_seq_features.permute(1, 0, 2)
        re_text = self.text_encoder(all_text_seq_features)
        re_text = re_text.permute(1, 0, 2).view(B, self.num_retrieval, T, -1).contiguous()
        re_text = re_text[:, :, -1:, :].contiguous()
        
        # T = re_motion.shape[2]
        # re_feat = re_feat.view(B, self.num_retrieval * T, -1).contiguous()
        re_dict = dict(
            re_text=re_text,
            re_motion=re_motion,
            re_mask=src_mask,
            raw_motion=all_motions,
            raw_motion_length=all_m_lengths,
            raw_motion_mask=raw_src_mask)
        return re_dict


@SUBMODULES.register_module()
class ReMoDiffuseTransformer(DiffusionTransformer):
    def __init__(self,
                 retrieval_cfg=None,
                 scale_func_cfg=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.database = RetrievalDatabase(**retrieval_cfg)
        self.scale_func_cfg = scale_func_cfg
        
    def scale_func(self, timestep):
        coarse_scale = self.scale_func_cfg['coarse_scale']
        w = (1 - (1000 - timestep) / 1000) * coarse_scale + 1
        if timestep > 100:
            if random.randint(0, 1) == 0:
                output = {
                    'both_coef': w,
                    'text_coef': 0,
                    'retr_coef': 1 - w,
                    'none_coef': 0
                }
            else:
                output = {
                    'both_coef': 0,
                    'text_coef': w,
                    'retr_coef': 0,
                    'none_coef': 1 - w
                }
        else:
            both_coef = self.scale_func_cfg['both_coef']
            text_coef = self.scale_func_cfg['text_coef']
            retr_coef = self.scale_func_cfg['retr_coef']
            none_coef = 1 - both_coef - text_coef - retr_coef
            output = {
                'both_coef': both_coef,
                'text_coef': text_coef,
                'retr_coef': retr_coef,
                'none_coef': none_coef
            }
        return output
            
    def get_precompute_condition(self, 
                                 text=None,
                                 motion_length=None,
                                 xf_out=None,
                                 re_dict=None,
                                 device=None,
                                 sample_idx=None,
                                 clip_feat=None,
                                 **kwargs):
        if xf_out is None:
            xf_out = self.encode_text(text, clip_feat, device)
        output = {'xf_out': xf_out}
        if re_dict is None:
            re_dict = self.database(text, motion_length, self.clip, device, idx=sample_idx)
        output['re_dict'] = re_dict
        return output

    def post_process(self, motion):
        return motion

    def forward_train(self, h=None, src_mask=None, emb=None, xf_out=None, re_dict=None, **kwargs):
        B, T = h.shape[0], h.shape[1]
        cond_type = torch.randint(0, 100, size=(B, 1, 1)).to(h.device)
        for module in self.temporal_decoder_blocks:
            h = module(x=h, xf=xf_out, emb=emb, src_mask=src_mask, cond_type=cond_type, re_dict=re_dict)

        output = self.out(h).view(B, T, -1).contiguous()
        return output
    
    def forward_test(self, h=None, src_mask=None, emb=None, xf_out=None, re_dict=None, timesteps=None, **kwargs):
        B, T = h.shape[0], h.shape[1]
        both_cond_type = torch.zeros(B, 1, 1).to(h.device) + 99
        text_cond_type = torch.zeros(B, 1, 1).to(h.device) + 1
        retr_cond_type = torch.zeros(B, 1, 1).to(h.device) + 10
        none_cond_type = torch.zeros(B, 1, 1).to(h.device)
        
        all_cond_type = torch.cat((
            both_cond_type, text_cond_type, retr_cond_type, none_cond_type
        ), dim=0)
        h = h.repeat(4, 1, 1)
        xf_out = xf_out.repeat(4, 1, 1)
        emb = emb.repeat(4, 1)
        src_mask = src_mask.repeat(4, 1, 1)
        if re_dict['re_motion'].shape[0] != h.shape[0]:
            re_dict['re_motion'] = re_dict['re_motion'].repeat(4, 1, 1, 1)
            re_dict['re_text'] = re_dict['re_text'].repeat(4, 1, 1, 1)
            re_dict['re_mask'] = re_dict['re_mask'].repeat(4, 1, 1)
        for module in self.temporal_decoder_blocks:
            h = module(x=h, xf=xf_out, emb=emb, src_mask=src_mask, cond_type=all_cond_type, re_dict=re_dict)
        out = self.out(h).view(4 * B, T, -1).contiguous()
        out_both = out[:B].contiguous()
        out_text = out[B: 2 * B].contiguous()
        out_retr = out[2 * B: 3 * B].contiguous()
        out_none = out[3 * B:].contiguous()
        
        coef_cfg = self.scale_func(int(timesteps[0]))
        both_coef = coef_cfg['both_coef']
        text_coef = coef_cfg['text_coef']
        retr_coef = coef_cfg['retr_coef']
        none_coef = coef_cfg['none_coef']
        output = out_both * both_coef + out_text * text_coef + out_retr * retr_coef + out_none * none_coef
        return output