Spaces:
Running
Running
import math | |
import random | |
import mmcv | |
import numpy as np | |
from ..builder import PIPELINES | |
import torch | |
from typing import Optional, Tuple, Union | |
class Crop(object): | |
r"""Crop motion sequences. | |
Args: | |
crop_size (int): The size of the cropped motion sequence. | |
""" | |
def __init__(self, | |
crop_size: Optional[Union[int, None]] = None): | |
self.crop_size = crop_size | |
assert self.crop_size is not None | |
def __call__(self, results): | |
motion = results['motion'] | |
length = len(motion) | |
if length >= self.crop_size: | |
idx = random.randint(0, length - self.crop_size) | |
motion = motion[idx: idx + self.crop_size] | |
results['motion_length'] = self.crop_size | |
else: | |
padding_length = self.crop_size - length | |
D = motion.shape[1:] | |
padding_zeros = np.zeros((padding_length, *D), dtype=np.float32) | |
motion = np.concatenate([motion, padding_zeros], axis=0) | |
results['motion_length'] = length | |
assert len(motion) == self.crop_size | |
results['motion'] = motion | |
results['motion_shape'] = motion.shape | |
if length >= self.crop_size: | |
results['motion_mask'] = torch.ones(self.crop_size).numpy() | |
else: | |
results['motion_mask'] = torch.cat( | |
(torch.ones(length), torch.zeros(self.crop_size - length))).numpy() | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size})' | |
return repr_str | |
class RandomCrop(object): | |
r"""Random crop motion sequences. Each sequence will be padded with zeros to the maximum length. | |
Args: | |
min_size (int or None): The minimum size of the cropped motion sequence (inclusive). | |
max_size (int or None): The maximum size of the cropped motion sequence (inclusive). | |
""" | |
def __init__(self, | |
min_size: Optional[Union[int, None]] = None, | |
max_size: Optional[Union[int, None]] = None): | |
self.min_size = min_size | |
self.max_size = max_size | |
assert self.min_size is not None | |
assert self.max_size is not None | |
def __call__(self, results): | |
motion = results['motion'] | |
length = len(motion) | |
crop_size = random.randint(self.min_size, self.max_size) | |
if length > crop_size: | |
idx = random.randint(0, length - crop_size) | |
motion = motion[idx: idx + crop_size] | |
results['motion_length'] = crop_size | |
else: | |
results['motion_length'] = length | |
padding_length = self.max_size - min(crop_size, length) | |
if padding_length > 0: | |
D = motion.shape[1:] | |
padding_zeros = np.zeros((padding_length, *D), dtype=np.float32) | |
motion = np.concatenate([motion, padding_zeros], axis=0) | |
results['motion'] = motion | |
results['motion_shape'] = motion.shape | |
if length >= self.max_size and crop_size == self.max_size: | |
results['motion_mask'] = torch.ones(self.max_size).numpy() | |
else: | |
results['motion_mask'] = torch.cat(( | |
torch.ones(min(length, crop_size)), | |
torch.zeros(self.max_size - min(length, crop_size))), dim=0).numpy() | |
assert len(motion) == self.max_size | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ + f'(min_size={self.min_size}' | |
repr_str += f', max_size={self.max_size})' | |
return repr_str | |
class Normalize(object): | |
"""Normalize motion sequences. | |
Args: | |
mean_path (str): Path of mean file. | |
std_path (str): Path of std file. | |
""" | |
def __init__(self, mean_path, std_path, eps=1e-9): | |
self.mean = np.load(mean_path) | |
self.std = np.load(std_path) | |
self.eps = eps | |
def __call__(self, results): | |
motion = results['motion'] | |
motion = (motion - self.mean) / (self.std + self.eps) | |
results['motion'] = motion | |
results['motion_norm_mean'] = self.mean | |
results['motion_norm_std'] = self.std | |
return results | |