File size: 19,310 Bytes
43c87a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aeee5f
43c87a4
 
 
 
 
 
 
 
4d55c37
43c87a4
 
 
 
 
 
4d55c37
43c87a4
 
 
 
4d55c37
43c87a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ad45f
43c87a4
 
 
 
0b8e3d3
43c87a4
 
 
 
 
a5fdf19
43c87a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898bce
43c87a4
 
 
 
 
 
 
 
 
 
 
1b3ef4f
43c87a4
 
 
 
 
 
 
 
 
51de67b
43c87a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fdf19
8b9963b
 
 
41fe79b
8b9963b
 
 
43c87a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460ac60
 
 
b57080c
 
 
 
 
d9236a7
 
460ac60
 
43c87a4
 
b57080c
 
43c87a4
 
 
 
 
 
 
 
e9cbe52
 
 
 
 
 
835e738
 
43c87a4
 
 
 
 
 
 
 
31ad45f
43c87a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import numpy as np
import streamlit as st
import cv2
import librosa
import librosa.display
from tensorflow.keras.models import load_model
import os
from datetime import datetime
import streamlit.components.v1 as components
import matplotlib.pyplot as plt
from PIL import Image
from melspec import plot_colored_polar, plot_melspec

# load models
model = load_model("model3.h5")

# constants
starttime = datetime.now()

CAT6 = ['fear', 'angry', 'neutral', 'happy', 'sad', 'surprise']
CAT7 = ['fear', 'disgust', 'neutral', 'happy', 'sad', 'surprise', 'angry']
CAT3 = ["positive", "neutral", "negative"]

COLOR_DICT = {"neutral": "grey",
              "positive": "green",
              "happy": "green",
              "surprise": "orange",
              "fear": "purple",
              "negative": "red",
              "angry": "red",
              "sad": "lightblue",
              "disgust": "brown"}

TEST_CAT = ['fear', 'disgust', 'neutral', 'happy', 'sad', 'surprise', 'angry']
TEST_PRED = np.array([.3, .3, .4, .1, .6, .9, .1])

# page settings
st.set_page_config(page_title="SER web-app", page_icon=":speech_balloon:", layout="wide")
# COLOR = "#1f1f2e"
# BACKGROUND_COLOR = "#d1d1e0"


# @st.cache(hash_funcs={tf_agents.utils.object_identity.ObjectIdentityDictionary: load_model})
# def load_model_cache(model):
#     return load_model(model)

# @st.cache
def log_file(txt=None):
    with open("log.txt", "a") as f:
        datetoday = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
        f.write(f"{txt} - {datetoday};\n")


# @st.cache
def save_audio(file):
    if file.size > 4000000:
        return 1
    # if not os.path.exists("audio"):
    #     os.makedirs("audio")
    folder = "audio"
    datetoday = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
    # clear the folder to avoid storage overload
    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
        except Exception as e:
            print('Failed to delete %s. Reason: %s' % (file_path, e))

    try:
        with open("log0.txt", "a") as f:
            f.write(f"{file.name} - {file.size} - {datetoday};\n")
    except:
        pass

    with open(os.path.join(folder, file.name), "wb") as f:
        f.write(file.getbuffer())
    return 0


# @st.cache
def get_melspec(audio):
    y, sr = librosa.load(audio, sr=44100)
    X = librosa.stft(y)
    Xdb = librosa.amplitude_to_db(abs(X))
    img = np.stack((Xdb,) * 3, -1)
    img = img.astype(np.uint8)
    grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    grayImage = cv2.resize(grayImage, (224, 224))
    rgbImage = np.repeat(grayImage[..., np.newaxis], 3, -1)
    return (rgbImage, Xdb)


# @st.cache
def get_mfccs(audio, limit):
    y, sr = librosa.load(audio)
    a = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
    if a.shape[1] > limit:
        mfccs = a[:, :limit]
    elif a.shape[1] < limit:
        mfccs = np.zeros((a.shape[0], limit))
        mfccs[:, :a.shape[1]] = a
    return mfccs


@st.cache_data
def get_title(predictions, categories=CAT6):
    title = f"Detected emotion: {categories[predictions.argmax()]} \
    - {predictions.max() * 100:.2f}%"
    return title


@st.cache_data
def color_dict(coldict=COLOR_DICT):
    return COLOR_DICT


@st.cache_data
def plot_polar(fig, predictions=TEST_PRED, categories=TEST_CAT,
               title="TEST", colors=COLOR_DICT):
    # color_sector = "grey"

    N = len(predictions)
    ind = predictions.argmax()

    COLOR = color_sector = colors[categories[ind]]
    theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
    radii = np.zeros_like(predictions)
    radii[predictions.argmax()] = predictions.max() * 10
    width = np.pi / 1.8 * predictions
    fig.set_facecolor("#d1d1e0")
    ax = plt.subplot(111, polar="True")
    ax.bar(theta, radii, width=width, bottom=0.0, color=color_sector, alpha=0.25)

    angles = [i / float(N) * 2 * np.pi for i in range(N)]
    angles += angles[:1]

    data = list(predictions)
    data += data[:1]
    plt.polar(angles, data, color=COLOR, linewidth=2)
    plt.fill(angles, data, facecolor=COLOR, alpha=0.25)

    ax.spines['polar'].set_color('lightgrey')
    ax.set_theta_offset(np.pi / 3)
    ax.set_theta_direction(-1)
    plt.xticks(angles[:-1], categories)
    ax.set_rlabel_position(0)
    plt.yticks([0, .25, .5, .75, 1], color="grey", size=8)
    plt.suptitle(title, color="darkblue", size=12)
    plt.title(f"BIG {N}\n", color=COLOR)
    plt.ylim(0, 1)
    plt.subplots_adjust(top=0.75)


def main():
    side_img = Image.open("images/emotion3.jpg")
    with st.sidebar:
        st.image(side_img, width=300)
    st.sidebar.subheader("Menu")
    website_menu = st.sidebar.selectbox("Menu", ("Emotion Recognition", "Project description"))
    st.set_option('deprecation.showfileUploaderEncoding', False)

    if website_menu == "Emotion Recognition":
        st.sidebar.subheader("Model")
        model_type = st.sidebar.selectbox("How would you like to predict?", ("mfccs", "mel-specs"))
        em3 = em6 = em7 = gender = False
        st.sidebar.subheader("Settings")

        st.markdown("## Upload the file")
        with st.container():
            col1, col2, col3 = st.columns(3)
            # audio_file = None
            # path = None
            with col1:
                audio_file = st.file_uploader("Upload audio file", type=['wav', 'mp3', 'ogg'])
                if audio_file is not None:
                    if not os.path.exists("audio"):
                        os.makedirs("audio")
                    path = os.path.join("audio", audio_file.name)
                    if_save_audio = save_audio(audio_file)
                    if if_save_audio == 1:
                        st.warning("File size is too large. Try another file.")
                    elif if_save_audio == 0:
                        # extract features
                        # display audio
                        st.audio(audio_file, format='audio/wav', start_time=0)
                        try:
                            wav, sr = librosa.load(path, sr=44100)
                            Xdb = get_melspec(path)[1]
                            mfccs = librosa.feature.mfcc(y=wav, sr=sr)
                            # # display audio
                            # st.audio(audio_file, format='audio/wav', start_time=0)
                        except Exception as e:
                            audio_file = None
                            st.error(f"Error {e} - wrong format of the file. Try another .wav file.")
                    else:
                        st.error("Unknown error")
                else:
                    if st.button("Try test file"):
                        wav, sr = librosa.load("test.wav", sr=44100)
                        Xdb = get_melspec("test.wav")[1]
                        mfccs = librosa.feature.mfcc(y=wav, sr=sr)
                        # display audio
                        st.audio("test.wav", format='audio/wav', start_time=0)
                        path = "test.wav"
                        audio_file = "test"
            with col2:
                if audio_file is not None:
                    fig = plt.figure(figsize=(10, 2))
                    fig.set_facecolor('#d1d1e0')
                    plt.title("Wave-form")
                    librosa.display.waveshow(wav, sr=44100, color="blue")
                    plt.gca().axes.get_yaxis().set_visible(False)
                    plt.gca().axes.get_xaxis().set_visible(False)
                    plt.gca().axes.spines["right"].set_visible(False)
                    plt.gca().axes.spines["left"].set_visible(False)
                    plt.gca().axes.spines["top"].set_visible(False)
                    plt.gca().axes.spines["bottom"].set_visible(False)
                    plt.gca().axes.set_facecolor('#d1d1e0')
                    st.write(fig)
                else:
                    pass
            #     st.write("Record audio file")
            #     if st.button('Record'):
            #         with st.spinner(f'Recording for 5 seconds ....'):
            #             st.write("Recording...")
            #             time.sleep(3)
            #         st.success("Recording completed")
            #         st.write("Error while loading the file")
            with col3:
                st.title("Convert any MP3 audio file to .WAV")
                st.subheader("Convert audio file")
                
                link = '[File conversion]' \
                       '(https://cloudconvert.com/mp3-to-wav)'
                st.markdown(link, unsafe_allow_html=True)
                

        if model_type == "mfccs":
            em3 = st.sidebar.checkbox("3 emotions", True)
            em6 = st.sidebar.checkbox("6 emotions", True)
            em7 = st.sidebar.checkbox("7 emotions")
            gender = st.sidebar.checkbox("gender")

        elif model_type == "mel-specs":
            st.sidebar.warning("This model is temporarily disabled")

        else:
            st.sidebar.warning("This model is temporarily disabled")

        # with st.sidebar.expander("Change colors"):
        #     st.sidebar.write("Use this options after you got the plots")
        #     col1, col2, col3, col4, col5, col6, col7 = st.columns(7)
        #
        #     with col1:
        #         a = st.color_picker("Angry", value="#FF0000")
        #     with col2:
        #         f = st.color_picker("Fear", value="#800080")
        #     with col3:
        #         d = st.color_picker("Disgust", value="#A52A2A")
        #     with col4:
        #         sd = st.color_picker("Sad", value="#ADD8E6")
        #     with col5:
        #         n = st.color_picker("Neutral", value="#808080")
        #     with col6:
        #         sp = st.color_picker("Surprise", value="#FFA500")
        #     with col7:
        #         h = st.color_picker("Happy", value="#008000")
        #     if st.button("Update colors"):
        #         global COLOR_DICT
        #         COLOR_DICT = {"neutral": n,
        #                       "positive": h,
        #                       "happy": h,
        #                       "surprise": sp,
        #                       "fear": f,
        #                       "negative": a,
        #                       "angry": a,
        #                       "sad": sd,
        #                       "disgust": d}
        #         st.success(COLOR_DICT)

        if audio_file is not None:
            st.markdown("## Analyzing...")
            if not audio_file == "test":
                st.sidebar.subheader("Audio file")
                file_details = {"Filename": audio_file.name, "FileSize": audio_file.size}
                st.sidebar.write(file_details)

            with st.container():
                col1, col2 = st.columns(2)
                with col1:
                    fig = plt.figure(figsize=(10, 2))
                    fig.set_facecolor('#d1d1e0')
                    plt.title("MFCCs")
                    librosa.display.specshow(mfccs, sr=sr, x_axis='time')
                    plt.gca().axes.get_yaxis().set_visible(False)
                    plt.gca().axes.spines["right"].set_visible(False)
                    plt.gca().axes.spines["left"].set_visible(False)
                    plt.gca().axes.spines["top"].set_visible(False)
                    st.write(fig)
                with col2:
                    fig2 = plt.figure(figsize=(10, 2))
                    fig2.set_facecolor('#d1d1e0')
                    plt.title("Mel-log-spectrogram")
                    librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='hz')
                    plt.gca().axes.get_yaxis().set_visible(False)
                    plt.gca().axes.spines["right"].set_visible(False)
                    plt.gca().axes.spines["left"].set_visible(False)
                    plt.gca().axes.spines["top"].set_visible(False)
                    st.write(fig2)

            if model_type == "mfccs":
                st.markdown("## Predictions")
                with st.container():
                    col1, col2, col3, col4 = st.columns(4)
                    mfccs = get_mfccs(path, model.input_shape[-1])
                    mfccs = mfccs.reshape(1, *mfccs.shape)
                    pred = model.predict(mfccs)[0]

                    with col1:
                        if em3:
                            pos = pred[3] + pred[5] * .5
                            neu = pred[2] + pred[5] * .5 + pred[4] * .5
                            neg = pred[0] + pred[1] + pred[4] * .5
                            data3 = np.array([pos, neu, neg])
                            txt = "MFCCs\n" + get_title(data3, CAT3)
                            fig = plt.figure(figsize=(5, 5))
                            COLORS = color_dict(COLOR_DICT)
                            plot_colored_polar(fig, predictions=data3, categories=CAT3,
                                               title=txt, colors=COLORS)
                            # plot_polar(fig, predictions=data3, categories=CAT3,
                            # title=txt, colors=COLORS)
                            st.write(fig)
                    with col2:
                        if em6:
                            txt = "MFCCs\n" + get_title(pred, CAT6)
                            fig2 = plt.figure(figsize=(5, 5))
                            COLORS = color_dict(COLOR_DICT)
                            plot_colored_polar(fig2, predictions=pred, categories=CAT6,
                                               title=txt, colors=COLORS)
                            # plot_polar(fig2, predictions=pred, categories=CAT6,
                            #            title=txt, colors=COLORS)
                            st.write(fig2)
                    with col3:
                        if em7:
                            model_ = load_model("model4.h5")
                            mfccs_ = get_mfccs(path, model_.input_shape[-2])
                            mfccs_ = mfccs_.T.reshape(1, *mfccs_.T.shape)
                            pred_ = model_.predict(mfccs_)[0]
                            txt = "MFCCs\n" + get_title(pred_, CAT7)
                            fig3 = plt.figure(figsize=(5, 5))
                            COLORS = color_dict(COLOR_DICT)
                            plot_colored_polar(fig3, predictions=pred_, categories=CAT7,
                                               title=txt, colors=COLORS)
                            # plot_polar(fig3, predictions=pred_, categories=CAT7,
                            #            title=txt, colors=COLORS)
                            st.write(fig3)
                    with col4:
                        if gender:
                            with st.spinner('Wait for it...'):
                                gmodel = load_model("model_mw.h5")
                                gmfccs = get_mfccs(path, gmodel.input_shape[-1])
                                gmfccs = gmfccs.reshape(1, *gmfccs.shape)
                                gpred = gmodel.predict(gmfccs)[0]
                                gdict = [["female", "woman.png"], ["male", "man.png"]]
                                ind = gpred.argmax()
                                txt = "Predicted gender: " + gdict[ind][0]
                                img = Image.open("images/" + gdict[ind][1])

                                fig4 = plt.figure(figsize=(3, 3))
                                fig4.set_facecolor('#d1d1e0')
                                plt.title(txt)
                                plt.imshow(img)
                                plt.axis("off")
                                st.write(fig4)

            # if model_type == "mel-specs":
            # st.markdown("## Predictions")
            # st.warning("The model in test mode. It may not be working properly.")
            # if st.checkbox("I'm OK with it"):
            #     try:
            #         with st.spinner("Wait... It can take some time"):
            #             global tmodel
            #             tmodel = load_model_cache("tmodel_all.h5")
            #             fig, tpred = plot_melspec(path, tmodel)
            #         col1, col2, col3 = st.columns(3)
            #         with col1:
            #             st.markdown("### Emotional spectrum")
            #             dimg = Image.open("images/spectrum.png")
            #             st.image(dimg, use_column_width=True)
            #         with col2:
            #             fig_, tpred_ = plot_melspec(path=path,
            #                                         tmodel=tmodel,
            #                                         three=True)
            #             st.write(fig_, use_column_width=True)
            #         with col3:
            #             st.write(fig, use_column_width=True)
            #     except Exception as e:
            #         st.error(f"Error {e}, model is not loaded")


    elif website_menu == "Project description":
        import pandas as pd
        import plotly.express as px
        st.title("Project description")
        st.subheader("Student Details")
        txt = """
                Student information include;
                * Student Name: **Adewuyi Gbenga Kolawole**
                * Student Matric No: **HNDCOM/22/035**
                * Session: **2022/2023**
                * Class: **HND 2**
                * Level: **400L**

                This machine learning web-application PROJECT is a partial fulfillment of requirement in Higher  National Diploma (HND) computer science **The Federal College of Animal Health and Production Technology**  **FCAHPTIB, 2023**. 
              """
        st.markdown(txt, unsafe_allow_html=True)

        st.subheader("Theory")
        link = '[Theory behind - the project(emotion recognition) ]'
        st.markdown(link + ":clap::clap::clap:", unsafe_allow_html=True)
        with st.expander("See Wikipedia definition"):
            components.iframe("https://en.wikipedia.org/wiki/Emotion_recognition",
                              height=320, scrolling=True)

        st.subheader("Dataset")
        txt = """

            Datasets used in this project
            * Crowd-sourced Emotional Mutimodal Actors Dataset (**Crema-D**) ("https://www.kaggle.com/code/ejlok1/audio-emotion-part-1-explore-data")
            * Ryerson Audio-Visual Database of Emotional Speech and Song (**Ravdess**) ("https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio")
            * Surrey Audio-Visual Expressed Emotion (**Savee**) ("https://www.kaggle.com/datasets/ejlok1/surrey-audiovisual-expressed-emotion-savee")
            * Toronto emotional speech set (**Tess**)

            All datasets used can be found on **Kaggle**

            The above datasets was used in the model training of this software before deployment
            """
        st.markdown(txt, unsafe_allow_html=True)

        df = pd.read_csv("df_audio.csv")
        fig = px.violin(df, y="source", x="emotion4", color="actors", box=True, points="all", hover_data=df.columns)
        st.plotly_chart(fig, use_container_width=True)

    else:
        pass


if __name__ == '__main__':
    main()