Spaces:
Sleeping
Sleeping
File size: 19,310 Bytes
43c87a4 7aeee5f 43c87a4 4d55c37 43c87a4 4d55c37 43c87a4 4d55c37 43c87a4 31ad45f 43c87a4 0b8e3d3 43c87a4 a5fdf19 43c87a4 3898bce 43c87a4 1b3ef4f 43c87a4 51de67b 43c87a4 a5fdf19 8b9963b 41fe79b 8b9963b 43c87a4 460ac60 b57080c d9236a7 460ac60 43c87a4 b57080c 43c87a4 e9cbe52 835e738 43c87a4 31ad45f 43c87a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import numpy as np
import streamlit as st
import cv2
import librosa
import librosa.display
from tensorflow.keras.models import load_model
import os
from datetime import datetime
import streamlit.components.v1 as components
import matplotlib.pyplot as plt
from PIL import Image
from melspec import plot_colored_polar, plot_melspec
# load models
model = load_model("model3.h5")
# constants
starttime = datetime.now()
CAT6 = ['fear', 'angry', 'neutral', 'happy', 'sad', 'surprise']
CAT7 = ['fear', 'disgust', 'neutral', 'happy', 'sad', 'surprise', 'angry']
CAT3 = ["positive", "neutral", "negative"]
COLOR_DICT = {"neutral": "grey",
"positive": "green",
"happy": "green",
"surprise": "orange",
"fear": "purple",
"negative": "red",
"angry": "red",
"sad": "lightblue",
"disgust": "brown"}
TEST_CAT = ['fear', 'disgust', 'neutral', 'happy', 'sad', 'surprise', 'angry']
TEST_PRED = np.array([.3, .3, .4, .1, .6, .9, .1])
# page settings
st.set_page_config(page_title="SER web-app", page_icon=":speech_balloon:", layout="wide")
# COLOR = "#1f1f2e"
# BACKGROUND_COLOR = "#d1d1e0"
# @st.cache(hash_funcs={tf_agents.utils.object_identity.ObjectIdentityDictionary: load_model})
# def load_model_cache(model):
# return load_model(model)
# @st.cache
def log_file(txt=None):
with open("log.txt", "a") as f:
datetoday = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
f.write(f"{txt} - {datetoday};\n")
# @st.cache
def save_audio(file):
if file.size > 4000000:
return 1
# if not os.path.exists("audio"):
# os.makedirs("audio")
folder = "audio"
datetoday = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
# clear the folder to avoid storage overload
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
try:
with open("log0.txt", "a") as f:
f.write(f"{file.name} - {file.size} - {datetoday};\n")
except:
pass
with open(os.path.join(folder, file.name), "wb") as f:
f.write(file.getbuffer())
return 0
# @st.cache
def get_melspec(audio):
y, sr = librosa.load(audio, sr=44100)
X = librosa.stft(y)
Xdb = librosa.amplitude_to_db(abs(X))
img = np.stack((Xdb,) * 3, -1)
img = img.astype(np.uint8)
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grayImage = cv2.resize(grayImage, (224, 224))
rgbImage = np.repeat(grayImage[..., np.newaxis], 3, -1)
return (rgbImage, Xdb)
# @st.cache
def get_mfccs(audio, limit):
y, sr = librosa.load(audio)
a = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
if a.shape[1] > limit:
mfccs = a[:, :limit]
elif a.shape[1] < limit:
mfccs = np.zeros((a.shape[0], limit))
mfccs[:, :a.shape[1]] = a
return mfccs
@st.cache_data
def get_title(predictions, categories=CAT6):
title = f"Detected emotion: {categories[predictions.argmax()]} \
- {predictions.max() * 100:.2f}%"
return title
@st.cache_data
def color_dict(coldict=COLOR_DICT):
return COLOR_DICT
@st.cache_data
def plot_polar(fig, predictions=TEST_PRED, categories=TEST_CAT,
title="TEST", colors=COLOR_DICT):
# color_sector = "grey"
N = len(predictions)
ind = predictions.argmax()
COLOR = color_sector = colors[categories[ind]]
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
radii = np.zeros_like(predictions)
radii[predictions.argmax()] = predictions.max() * 10
width = np.pi / 1.8 * predictions
fig.set_facecolor("#d1d1e0")
ax = plt.subplot(111, polar="True")
ax.bar(theta, radii, width=width, bottom=0.0, color=color_sector, alpha=0.25)
angles = [i / float(N) * 2 * np.pi for i in range(N)]
angles += angles[:1]
data = list(predictions)
data += data[:1]
plt.polar(angles, data, color=COLOR, linewidth=2)
plt.fill(angles, data, facecolor=COLOR, alpha=0.25)
ax.spines['polar'].set_color('lightgrey')
ax.set_theta_offset(np.pi / 3)
ax.set_theta_direction(-1)
plt.xticks(angles[:-1], categories)
ax.set_rlabel_position(0)
plt.yticks([0, .25, .5, .75, 1], color="grey", size=8)
plt.suptitle(title, color="darkblue", size=12)
plt.title(f"BIG {N}\n", color=COLOR)
plt.ylim(0, 1)
plt.subplots_adjust(top=0.75)
def main():
side_img = Image.open("images/emotion3.jpg")
with st.sidebar:
st.image(side_img, width=300)
st.sidebar.subheader("Menu")
website_menu = st.sidebar.selectbox("Menu", ("Emotion Recognition", "Project description"))
st.set_option('deprecation.showfileUploaderEncoding', False)
if website_menu == "Emotion Recognition":
st.sidebar.subheader("Model")
model_type = st.sidebar.selectbox("How would you like to predict?", ("mfccs", "mel-specs"))
em3 = em6 = em7 = gender = False
st.sidebar.subheader("Settings")
st.markdown("## Upload the file")
with st.container():
col1, col2, col3 = st.columns(3)
# audio_file = None
# path = None
with col1:
audio_file = st.file_uploader("Upload audio file", type=['wav', 'mp3', 'ogg'])
if audio_file is not None:
if not os.path.exists("audio"):
os.makedirs("audio")
path = os.path.join("audio", audio_file.name)
if_save_audio = save_audio(audio_file)
if if_save_audio == 1:
st.warning("File size is too large. Try another file.")
elif if_save_audio == 0:
# extract features
# display audio
st.audio(audio_file, format='audio/wav', start_time=0)
try:
wav, sr = librosa.load(path, sr=44100)
Xdb = get_melspec(path)[1]
mfccs = librosa.feature.mfcc(y=wav, sr=sr)
# # display audio
# st.audio(audio_file, format='audio/wav', start_time=0)
except Exception as e:
audio_file = None
st.error(f"Error {e} - wrong format of the file. Try another .wav file.")
else:
st.error("Unknown error")
else:
if st.button("Try test file"):
wav, sr = librosa.load("test.wav", sr=44100)
Xdb = get_melspec("test.wav")[1]
mfccs = librosa.feature.mfcc(y=wav, sr=sr)
# display audio
st.audio("test.wav", format='audio/wav', start_time=0)
path = "test.wav"
audio_file = "test"
with col2:
if audio_file is not None:
fig = plt.figure(figsize=(10, 2))
fig.set_facecolor('#d1d1e0')
plt.title("Wave-form")
librosa.display.waveshow(wav, sr=44100, color="blue")
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().axes.get_xaxis().set_visible(False)
plt.gca().axes.spines["right"].set_visible(False)
plt.gca().axes.spines["left"].set_visible(False)
plt.gca().axes.spines["top"].set_visible(False)
plt.gca().axes.spines["bottom"].set_visible(False)
plt.gca().axes.set_facecolor('#d1d1e0')
st.write(fig)
else:
pass
# st.write("Record audio file")
# if st.button('Record'):
# with st.spinner(f'Recording for 5 seconds ....'):
# st.write("Recording...")
# time.sleep(3)
# st.success("Recording completed")
# st.write("Error while loading the file")
with col3:
st.title("Convert any MP3 audio file to .WAV")
st.subheader("Convert audio file")
link = '[File conversion]' \
'(https://cloudconvert.com/mp3-to-wav)'
st.markdown(link, unsafe_allow_html=True)
if model_type == "mfccs":
em3 = st.sidebar.checkbox("3 emotions", True)
em6 = st.sidebar.checkbox("6 emotions", True)
em7 = st.sidebar.checkbox("7 emotions")
gender = st.sidebar.checkbox("gender")
elif model_type == "mel-specs":
st.sidebar.warning("This model is temporarily disabled")
else:
st.sidebar.warning("This model is temporarily disabled")
# with st.sidebar.expander("Change colors"):
# st.sidebar.write("Use this options after you got the plots")
# col1, col2, col3, col4, col5, col6, col7 = st.columns(7)
#
# with col1:
# a = st.color_picker("Angry", value="#FF0000")
# with col2:
# f = st.color_picker("Fear", value="#800080")
# with col3:
# d = st.color_picker("Disgust", value="#A52A2A")
# with col4:
# sd = st.color_picker("Sad", value="#ADD8E6")
# with col5:
# n = st.color_picker("Neutral", value="#808080")
# with col6:
# sp = st.color_picker("Surprise", value="#FFA500")
# with col7:
# h = st.color_picker("Happy", value="#008000")
# if st.button("Update colors"):
# global COLOR_DICT
# COLOR_DICT = {"neutral": n,
# "positive": h,
# "happy": h,
# "surprise": sp,
# "fear": f,
# "negative": a,
# "angry": a,
# "sad": sd,
# "disgust": d}
# st.success(COLOR_DICT)
if audio_file is not None:
st.markdown("## Analyzing...")
if not audio_file == "test":
st.sidebar.subheader("Audio file")
file_details = {"Filename": audio_file.name, "FileSize": audio_file.size}
st.sidebar.write(file_details)
with st.container():
col1, col2 = st.columns(2)
with col1:
fig = plt.figure(figsize=(10, 2))
fig.set_facecolor('#d1d1e0')
plt.title("MFCCs")
librosa.display.specshow(mfccs, sr=sr, x_axis='time')
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().axes.spines["right"].set_visible(False)
plt.gca().axes.spines["left"].set_visible(False)
plt.gca().axes.spines["top"].set_visible(False)
st.write(fig)
with col2:
fig2 = plt.figure(figsize=(10, 2))
fig2.set_facecolor('#d1d1e0')
plt.title("Mel-log-spectrogram")
librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='hz')
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().axes.spines["right"].set_visible(False)
plt.gca().axes.spines["left"].set_visible(False)
plt.gca().axes.spines["top"].set_visible(False)
st.write(fig2)
if model_type == "mfccs":
st.markdown("## Predictions")
with st.container():
col1, col2, col3, col4 = st.columns(4)
mfccs = get_mfccs(path, model.input_shape[-1])
mfccs = mfccs.reshape(1, *mfccs.shape)
pred = model.predict(mfccs)[0]
with col1:
if em3:
pos = pred[3] + pred[5] * .5
neu = pred[2] + pred[5] * .5 + pred[4] * .5
neg = pred[0] + pred[1] + pred[4] * .5
data3 = np.array([pos, neu, neg])
txt = "MFCCs\n" + get_title(data3, CAT3)
fig = plt.figure(figsize=(5, 5))
COLORS = color_dict(COLOR_DICT)
plot_colored_polar(fig, predictions=data3, categories=CAT3,
title=txt, colors=COLORS)
# plot_polar(fig, predictions=data3, categories=CAT3,
# title=txt, colors=COLORS)
st.write(fig)
with col2:
if em6:
txt = "MFCCs\n" + get_title(pred, CAT6)
fig2 = plt.figure(figsize=(5, 5))
COLORS = color_dict(COLOR_DICT)
plot_colored_polar(fig2, predictions=pred, categories=CAT6,
title=txt, colors=COLORS)
# plot_polar(fig2, predictions=pred, categories=CAT6,
# title=txt, colors=COLORS)
st.write(fig2)
with col3:
if em7:
model_ = load_model("model4.h5")
mfccs_ = get_mfccs(path, model_.input_shape[-2])
mfccs_ = mfccs_.T.reshape(1, *mfccs_.T.shape)
pred_ = model_.predict(mfccs_)[0]
txt = "MFCCs\n" + get_title(pred_, CAT7)
fig3 = plt.figure(figsize=(5, 5))
COLORS = color_dict(COLOR_DICT)
plot_colored_polar(fig3, predictions=pred_, categories=CAT7,
title=txt, colors=COLORS)
# plot_polar(fig3, predictions=pred_, categories=CAT7,
# title=txt, colors=COLORS)
st.write(fig3)
with col4:
if gender:
with st.spinner('Wait for it...'):
gmodel = load_model("model_mw.h5")
gmfccs = get_mfccs(path, gmodel.input_shape[-1])
gmfccs = gmfccs.reshape(1, *gmfccs.shape)
gpred = gmodel.predict(gmfccs)[0]
gdict = [["female", "woman.png"], ["male", "man.png"]]
ind = gpred.argmax()
txt = "Predicted gender: " + gdict[ind][0]
img = Image.open("images/" + gdict[ind][1])
fig4 = plt.figure(figsize=(3, 3))
fig4.set_facecolor('#d1d1e0')
plt.title(txt)
plt.imshow(img)
plt.axis("off")
st.write(fig4)
# if model_type == "mel-specs":
# st.markdown("## Predictions")
# st.warning("The model in test mode. It may not be working properly.")
# if st.checkbox("I'm OK with it"):
# try:
# with st.spinner("Wait... It can take some time"):
# global tmodel
# tmodel = load_model_cache("tmodel_all.h5")
# fig, tpred = plot_melspec(path, tmodel)
# col1, col2, col3 = st.columns(3)
# with col1:
# st.markdown("### Emotional spectrum")
# dimg = Image.open("images/spectrum.png")
# st.image(dimg, use_column_width=True)
# with col2:
# fig_, tpred_ = plot_melspec(path=path,
# tmodel=tmodel,
# three=True)
# st.write(fig_, use_column_width=True)
# with col3:
# st.write(fig, use_column_width=True)
# except Exception as e:
# st.error(f"Error {e}, model is not loaded")
elif website_menu == "Project description":
import pandas as pd
import plotly.express as px
st.title("Project description")
st.subheader("Student Details")
txt = """
Student information include;
* Student Name: **Adewuyi Gbenga Kolawole**
* Student Matric No: **HNDCOM/22/035**
* Session: **2022/2023**
* Class: **HND 2**
* Level: **400L**
This machine learning web-application PROJECT is a partial fulfillment of requirement in Higher National Diploma (HND) computer science **The Federal College of Animal Health and Production Technology** **FCAHPTIB, 2023**.
"""
st.markdown(txt, unsafe_allow_html=True)
st.subheader("Theory")
link = '[Theory behind - the project(emotion recognition) ]'
st.markdown(link + ":clap::clap::clap:", unsafe_allow_html=True)
with st.expander("See Wikipedia definition"):
components.iframe("https://en.wikipedia.org/wiki/Emotion_recognition",
height=320, scrolling=True)
st.subheader("Dataset")
txt = """
Datasets used in this project
* Crowd-sourced Emotional Mutimodal Actors Dataset (**Crema-D**) ("https://www.kaggle.com/code/ejlok1/audio-emotion-part-1-explore-data")
* Ryerson Audio-Visual Database of Emotional Speech and Song (**Ravdess**) ("https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio")
* Surrey Audio-Visual Expressed Emotion (**Savee**) ("https://www.kaggle.com/datasets/ejlok1/surrey-audiovisual-expressed-emotion-savee")
* Toronto emotional speech set (**Tess**)
All datasets used can be found on **Kaggle**
The above datasets was used in the model training of this software before deployment
"""
st.markdown(txt, unsafe_allow_html=True)
df = pd.read_csv("df_audio.csv")
fig = px.violin(df, y="source", x="emotion4", color="actors", box=True, points="all", hover_data=df.columns)
st.plotly_chart(fig, use_container_width=True)
else:
pass
if __name__ == '__main__':
main()
|