Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
class AnimeCNN(nn.Module): | |
def __init__(self, num_classes=4): | |
super().__init__() | |
self.features = nn.Sequential( | |
nn.Conv2d(3, 32, 3, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2), | |
nn.Dropout(0.25), | |
nn.Conv2d(32, 64, 3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2), | |
nn.Dropout(0.25) | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(64*16*16, 256), | |
nn.BatchNorm1d(256), | |
nn.ReLU(), | |
nn.Dropout(0.5), | |
nn.Linear(256, num_classes) | |
) | |
def forward(self, x): | |
x = self.features(x) | |
x = x.view(x.size(0), -1) | |
x = self.classifier(x) | |
return x | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
model = AnimeCNN() | |
model.load_state_dict(torch.load('model.pth', map_location=device, weights_only=True)) | |
model.eval() | |
classes = ["usada_pekora", "aisaka_taiga", "megumin", "minato_aqua"] | |
transform = transforms.Compose([ | |
transforms.Resize((64, 64)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
def predict(image): | |
image = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = model(image) | |
probabilities = torch.nn.functional.softmax(outputs[0], dim=0) | |
confidences = {classes[i]: float(probabilities[i]) for i in range(4)} | |
return confidences | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil", label="入力画像"), | |
outputs=gr.Label(num_top_classes=4, label="予測結果"), | |
title="アニメキャラクター分類器", | |
description="うさだぺこら・逢坂大河・めぐみん・湊あくあの画像を分類します。画像をアップロードしてください。", | |
examples=[ | |
["examples/usada_pekora.jpg"], | |
["examples/aisaka_taiga.jpg"], | |
["examples/megumin.jpg"], | |
["examples/minato_aqua.jpg"] | |
], | |
) | |
interface.launch(server_name="0.0.0.0", server_port=7860, share=True) | |