Spaces:
Sleeping
Sleeping
Upload 4 files
#1
by
mistermprah
- opened
- app.py +99 -0
- lstm_model.h5 +3 -0
- requirements.txt +9 -0
- scaler.joblib +3 -0
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import yfinance as yf
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from tensorflow.keras.models import load_model
|
| 8 |
+
from joblib import load
|
| 9 |
+
|
| 10 |
+
# Load the saved LSTM model and scaler
|
| 11 |
+
lstm_model = load_model('/kaggle/input/madel-and-scaler/lstm_model.h5')
|
| 12 |
+
scaler = load('/kaggle/input/madel-and-scaler/scaler.joblib')
|
| 13 |
+
|
| 14 |
+
# Define the list of stocks
|
| 15 |
+
stock_list = ['GOOG', 'AAPL', 'TSLA', 'AMZN', 'MSFT']
|
| 16 |
+
|
| 17 |
+
# Function to get the last row of stock data
|
| 18 |
+
def get_last_stock_data(ticker):
|
| 19 |
+
try:
|
| 20 |
+
start_date = '2010-01-01'
|
| 21 |
+
end_date = datetime.now().strftime('%Y-%m-%d')
|
| 22 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
| 23 |
+
last_row = data.iloc[-1]
|
| 24 |
+
return last_row.to_dict()
|
| 25 |
+
except Exception as e:
|
| 26 |
+
return str(e)
|
| 27 |
+
|
| 28 |
+
# Function to make predictions
|
| 29 |
+
def predict_stock_price(ticker, open_price, high_price, low_price, close_price, adj_close_price, volume):
|
| 30 |
+
try:
|
| 31 |
+
start_date = '2010-01-01'
|
| 32 |
+
end_date = datetime.now().strftime('%Y-%m-%d')
|
| 33 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
| 34 |
+
|
| 35 |
+
# Prepare the data
|
| 36 |
+
data = data[['Close']]
|
| 37 |
+
dataset = data.values
|
| 38 |
+
scaled_data = scaler.transform(dataset)
|
| 39 |
+
|
| 40 |
+
# Append the user inputs as the last row in the data
|
| 41 |
+
user_input = np.array([[close_price]])
|
| 42 |
+
user_input_scaled = scaler.transform(user_input)
|
| 43 |
+
scaled_data = np.vstack([scaled_data, user_input_scaled])
|
| 44 |
+
|
| 45 |
+
# Prepare the data for LSTM
|
| 46 |
+
x_test_lstm = []
|
| 47 |
+
for i in range(60, len(scaled_data)):
|
| 48 |
+
x_test_lstm.append(scaled_data[i-60:i])
|
| 49 |
+
|
| 50 |
+
x_test_lstm = np.array(x_test_lstm)
|
| 51 |
+
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))
|
| 52 |
+
|
| 53 |
+
# LSTM Predictions
|
| 54 |
+
lstm_predictions = lstm_model.predict(x_test_lstm)
|
| 55 |
+
lstm_predictions = scaler.inverse_transform(lstm_predictions)
|
| 56 |
+
next_day_lstm_price = lstm_predictions[-1][0]
|
| 57 |
+
|
| 58 |
+
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"
|
| 59 |
+
|
| 60 |
+
return result
|
| 61 |
+
except Exception as e:
|
| 62 |
+
return str(e)
|
| 63 |
+
|
| 64 |
+
# Set up Gradio interface
|
| 65 |
+
ticker_input = gr.Dropdown(choices=stock_list, label="Stock Ticker")
|
| 66 |
+
|
| 67 |
+
def get_user_inputs(ticker):
|
| 68 |
+
last_data = get_last_stock_data(ticker)
|
| 69 |
+
if isinstance(last_data, str):
|
| 70 |
+
return gr.Textbox.update(value=last_data)
|
| 71 |
+
else:
|
| 72 |
+
return gr.update(inputs=[
|
| 73 |
+
gr.Number(value=last_data['Open'], label='Open'),
|
| 74 |
+
gr.Number(value=last_data['High'], label='High'),
|
| 75 |
+
gr.Number(value=last_data['Low'], label='Low'),
|
| 76 |
+
gr.Number(value=last_data['Close'], label='Close'),
|
| 77 |
+
gr.Number(value=last_data['Adj Close'], label='Adj Close'),
|
| 78 |
+
gr.Number(value=last_data['Volume'], label='Volume')
|
| 79 |
+
])
|
| 80 |
+
|
| 81 |
+
iface = gr.Interface(
|
| 82 |
+
fn=predict_stock_price,
|
| 83 |
+
inputs=[
|
| 84 |
+
ticker_input,
|
| 85 |
+
gr.Number(label="Open"),
|
| 86 |
+
gr.Number(label="High"),
|
| 87 |
+
gr.Number(label="Low"),
|
| 88 |
+
gr.Number(label="Close"),
|
| 89 |
+
gr.Number(label="Adj Close"),
|
| 90 |
+
gr.Number(label="Volume")
|
| 91 |
+
],
|
| 92 |
+
outputs=gr.Textbox(),
|
| 93 |
+
title="Stock Price Predictor",
|
| 94 |
+
description="Select the stock ticker and input the last recorded values to predict the closing price using the LSTM model."
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
iface.launch()
|
| 98 |
+
|
| 99 |
+
|
lstm_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7812e428cc87e438b827fe557e3153355a1905c22800d146dc26b976b4c9311
|
| 3 |
+
size 408600
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio
|
| 3 |
+
yfinance
|
| 4 |
+
tensorflow
|
| 5 |
+
joblib
|
| 6 |
+
matplotlib
|
| 7 |
+
numpy
|
| 8 |
+
pandas
|
| 9 |
+
scikit-learn
|
scaler.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac234b6fe95df3b478938c9c61c63f7a79419279dce91d80fbdb1a330fb90030
|
| 3 |
+
size 719
|