cursor_slides_internvl2 / app_internvl2.py
mknolan's picture
Upload InternVL2 implementation
fb7360f verified
import gradio as gr
from PIL import Image
import os
import time
import numpy as np
import torch
import warnings
import stat
import subprocess
import sys
# Set environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Print system information
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available via PyTorch: {torch.cuda.is_available()}")
print(f"CUDA version via PyTorch: {torch.version.cuda if torch.cuda.is_available() else 'Not available'}")
# Try to run nvidia-smi
def run_nvidia_smi():
try:
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
print("nvidia-smi output:")
print(result.stdout)
return True
else:
print("nvidia-smi error:")
print(result.stderr)
return False
except Exception as e:
print(f"Error running nvidia-smi: {str(e)}")
return False
# Run nvidia-smi
nvidia_smi_available = run_nvidia_smi()
print(f"nvidia-smi available: {nvidia_smi_available}")
# Show CUDA devices
if torch.cuda.is_available():
print(f"CUDA device count: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"CUDA Device {i}: {torch.cuda.get_device_name(i)}")
print(f"Current CUDA device: {torch.cuda.current_device()}")
# Ensure all cache directories exist with proper permissions
def setup_cache_directories():
# Gradio cache directory
cache_dir = os.path.join(os.getcwd(), "gradio_cached_examples")
os.makedirs(cache_dir, exist_ok=True)
# HuggingFace cache directories
hf_cache = os.path.join(os.getcwd(), ".cache", "huggingface")
transformers_cache = os.path.join(hf_cache, "transformers")
os.makedirs(hf_cache, exist_ok=True)
os.makedirs(transformers_cache, exist_ok=True)
# Set permissions
try:
for directory in [cache_dir, hf_cache, transformers_cache]:
if os.path.exists(directory):
os.chmod(directory, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # 0o777
print(f"Set permissions for {directory}")
except Exception as e:
print(f"Warning: Could not set permissions: {str(e)}")
return cache_dir
# Set up cache directories
cache_dir = setup_cache_directories()
# Suppress specific warnings that might be caused by package version mismatches
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
warnings.filterwarnings("ignore", category=UserWarning)
# Check for actual GPU availability
def check_gpu_availability():
"""Check if GPU is actually available and working"""
print("Checking GPU availability...")
if not torch.cuda.is_available():
print("CUDA is not available in PyTorch")
return False
try:
# Try to initialize CUDA and run a simple operation
print("Attempting to create a tensor on CUDA...")
x = torch.rand(10, device="cuda")
y = x + x
print("Successfully created and operated on CUDA tensor")
return True
except Exception as e:
print(f"GPU initialization failed: {str(e)}")
return False
# Global variables
internvl2_model = None
USE_GPU = check_gpu_availability()
if USE_GPU:
print("GPU is available and working properly")
else:
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
# ALTERNATIVE MODEL: Let's try a simpler vision model as backup
try:
from transformers import BlipProcessor, BlipForConditionalGeneration
HAS_BLIP = True
blip_processor = None
blip_model = None
print("Successfully imported BLIP model")
except ImportError:
HAS_BLIP = False
print("BLIP model not available, will try InternVL2")
# Try importing lmdeploy for InternVL2
try:
from lmdeploy import pipeline, TurbomindEngineConfig
HAS_LMDEPLOY = True
print("Successfully imported lmdeploy")
except ImportError as e:
HAS_LMDEPLOY = False
print(f"lmdeploy import failed: {str(e)}. Will try backup model.")
# Try to load the appropriate model
def load_model():
global internvl2_model, blip_processor, blip_model
if not USE_GPU:
print("Cannot load models without GPU acceleration.")
return False
# Try to load BLIP first since it's more reliable
if HAS_BLIP:
try:
print("Loading BLIP model...")
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
print("BLIP model loaded successfully!")
except Exception as e:
print(f"Failed to load BLIP: {str(e)}")
blip_processor = None
blip_model = None
# Then try InternVL2 if lmdeploy is available
if HAS_LMDEPLOY:
try:
print("Attempting to load InternVL2 model...")
# Configure for AWQ quantized model with larger context
backend_config = TurbomindEngineConfig(
model_format='awq',
session_len=4096, # Increased session length
max_batch_size=1, # Limit batch size to reduce memory usage
cache_max_entry_count=0.3, # Adjust cache to optimize for single requests
tp=1 # Set tensor parallelism to 1 (use single GPU)
)
# Set to non-streaming mode with explicit token limits
internvl2_model = pipeline(
"OpenGVLab/InternVL2-40B-AWQ",
backend_config=backend_config,
model_name_or_path=None,
backend_name="turbomind",
stream=False, # Disable streaming
max_new_tokens=512, # Explicitly set max new tokens
)
print("InternVL2 model loaded successfully!")
except Exception as e:
print(f"Failed to load InternVL2: {str(e)}")
internvl2_model = None
# Return True if at least one model is loaded
return (blip_model is not None and blip_processor is not None) or (internvl2_model is not None)
# Try to load a model at startup
MODEL_LOADED = load_model()
WHICH_MODEL = "InternVL2" if internvl2_model is not None else "BLIP" if blip_model is not None else "None"
def analyze_image(image, prompt):
"""Analyze the image using available model"""
if not MODEL_LOADED:
return "No model could be loaded. Please check the logs for details."
if not USE_GPU:
return "ERROR: This application requires GPU acceleration. No GPU detected."
try:
# Convert image to right format if needed
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image).convert('RGB')
else:
pil_image = image.convert('RGB')
# Try BLIP first since it's more reliable
if blip_model is not None and blip_processor is not None:
try:
print("Running inference with BLIP...")
# BLIP doesn't use prompts the same way, simplify
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
out = blip_model.generate(**inputs, max_length=80, min_length=10, num_beams=5)
result = blip_processor.decode(out[0], skip_special_tokens=True)
# Check if BLIP result is empty
if not result or result.strip() == "":
print("BLIP model returned an empty response")
# Only fall through to InternVL2 if BLIP fails
raise ValueError("Empty response from BLIP")
return f"[BLIP] {result}"
except Exception as e:
print(f"Error with BLIP: {str(e)}")
# If BLIP fails, try InternVL2 if available
# Try InternVL2 if available
if internvl2_model is not None:
try:
print("Running inference with InternVL2...")
print(f"Using prompt: '{prompt}'")
# Create a specifically formatted prompt for InternVL2
formatted_prompt = f"<image>\n{prompt}"
print(f"Formatted prompt: '{formatted_prompt}'")
# Run the model with more explicit parameters
response = internvl2_model(
(formatted_prompt, pil_image),
max_new_tokens=512, # Set higher token limit
temperature=0.7, # Add temperature for better generation
top_p=0.9 # Add top_p for better generation
)
# Print debug info about the response
print(f"Response type: {type(response)}")
print(f"Response attributes: {dir(response) if hasattr(response, '__dir__') else 'No dir available'}")
# Try different ways to extract the text
if hasattr(response, "text"):
result = response.text
print(f"Found 'text' attribute: '{result}'")
elif hasattr(response, "response"):
result = response.response
print(f"Found 'response' attribute: '{result}'")
elif hasattr(response, "generated_text"):
result = response.generated_text
print(f"Found 'generated_text' attribute: '{result}'")
else:
# If no attribute worked, convert the whole response to string
result = str(response)
print(f"Using string conversion: '{result}'")
# Check if we got an empty result
if not result or result.strip() == "":
print("WARNING: Received empty response from InternVL2")
return "InternVL2 failed to analyze the image (empty response). This may be due to token limits."
return f"[InternVL2] {result}"
except Exception as e:
print(f"Error with InternVL2: {str(e)}")
return f"Error with InternVL2: {str(e)}"
return "No model was able to analyze the image. See logs for details."
except Exception as e:
print(f"Error in image analysis: {str(e)}")
# Try to clean up memory in case of error
if USE_GPU:
torch.cuda.empty_cache()
return f"Error in image analysis: {str(e)}"
def process_image(image, analysis_type="general"):
"""Process the image and return the analysis"""
if image is None:
return "Please upload an image."
# Define prompt based on analysis type
if analysis_type == "general":
prompt = "Describe this image in detail."
elif analysis_type == "text":
prompt = "What text can you see in this image? Please transcribe it accurately."
elif analysis_type == "chart":
prompt = "Analyze any charts, graphs or diagrams in this image in detail, including trends, data points, and conclusions."
elif analysis_type == "people":
prompt = "Describe the people in this image - their appearance, actions, and expressions."
elif analysis_type == "technical":
prompt = "Provide a technical analysis of this image, including object identification, spatial relationships, and any technical elements present."
else:
prompt = "Describe this image in detail."
start_time = time.time()
# Get analysis from the model
analysis = analyze_image(image, prompt)
elapsed_time = time.time() - start_time
return f"{analysis}\n\nAnalysis completed in {elapsed_time:.2f} seconds."
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Image Analysis with InternVL2") as demo:
gr.Markdown(f"# Image Analysis with {WHICH_MODEL}")
# System diagnostics
system_info = f"""
## System Diagnostics:
- Model Used: {WHICH_MODEL}
- Model Loaded: {MODEL_LOADED}
- PyTorch Version: {torch.__version__}
- CUDA Available: {torch.cuda.is_available()}
- GPU Working: {USE_GPU}
- nvidia-smi Available: {nvidia_smi_available}
"""
gr.Markdown(system_info)
gr.Markdown(f"Upload an image to analyze it using the {WHICH_MODEL} model.")
# Show warnings based on system status
if not MODEL_LOADED:
gr.Markdown("⚠️ **WARNING**: No model could be loaded. This demo will not function correctly.", elem_classes=["warning-message"])
if not USE_GPU:
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration.", elem_classes=["error-message"])
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Image")
analysis_type = gr.Radio(
["general", "text", "chart", "people", "technical"],
label="Analysis Type",
value="general"
)
submit_btn = gr.Button("Analyze Image")
# Disable button if GPU is not available or no model loaded
if not USE_GPU or not MODEL_LOADED:
submit_btn.interactive = False
with gr.Column(scale=2):
output_text = gr.Textbox(label="Analysis Result", lines=20)
if not USE_GPU:
output_text.value = f"""ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration.
Diagnostics:
- Model Used: {WHICH_MODEL}
- PyTorch Version: {torch.__version__}
- CUDA Available via PyTorch: {torch.cuda.is_available()}
- nvidia-smi Available: {nvidia_smi_available}
- GPU Working: {USE_GPU}
Please ensure this Space is using a GPU-enabled instance and that the GPU is correctly initialized."""
elif not MODEL_LOADED:
output_text.value = f"""ERROR: No model could be loaded.
Diagnostics:
- Model Used: {WHICH_MODEL}
- PyTorch Version: {torch.__version__}
- CUDA Available via PyTorch: {torch.cuda.is_available()}
- nvidia-smi Available: {nvidia_smi_available}
- GPU Working: {USE_GPU}
Please check the logs for more details."""
submit_btn.click(
fn=process_image,
inputs=[input_image, analysis_type],
outputs=output_text
)
gr.Markdown("""
## Analysis Types
- **General**: General description of the image
- **Text**: Focus on identifying and transcribing text in the image
- **Chart**: Detailed analysis of charts, graphs, and diagrams
- **People**: Description of people, their appearance and actions
- **Technical**: Technical analysis identifying objects and spatial relationships
""")
# Hardware requirements notice
gr.Markdown("""
## System Requirements
This application requires:
- NVIDIA GPU with CUDA support
- At least 16GB of GPU memory recommended
- GPU drivers properly installed and configured
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
""")
return demo
# Main function
if __name__ == "__main__":
# Create the Gradio interface
demo = create_interface()
# Launch the interface
demo.launch(share=False, server_name="0.0.0.0")