File size: 6,376 Bytes
65d886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6546822
65d886a
b8c1cf7
65d886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a607d
65d886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a607d
 
 
 
 
 
 
 
 
 
 
cc30221
46a607d
65d886a
46a607d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import time
import torch
import lightning as L
from torch.utils.data import DataLoader
from lightning.fabric.loggers import CSVLogger
from lightning.fabric.strategies import FSDPStrategy
from tsai_gpt.model import GPT, Block, Config
from tsai_gpt.tokenizer import Tokenizer
from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset
from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops
from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor
from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint, gptq_quantization
import torch.nn as nn
from pathlib import Path
import sys
import random
from torch import nn
import lightning.pytorch as pl
from torch.nn import functional as F



model_name = "pythia-160m"
name = "redpajama"

def _init_weights(module: nn.Module) -> None:
        """Meant to be used with `gpt.apply(gpt._init_weights)`."""
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

config = Config.from_name(model_name)
model = GPT(config)

next(model.parameters()).sum() #-25 -2 -860

model.apply(_init_weights)
model.load_state_dict


checkpoint_dir = Path("final-gpt-model-ckpt.pth")
strategy = "auto"
quantize = None
devices = 1
precision = None


precision = get_default_supported_precision(training=False)
plugins = None
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
fabric.launch()
fabric.print(f"Loading model {str(checkpoint_dir)!r} with {config.__dict__}", file=sys.stderr)

with fabric.init_module(empty_init=True), gptq_quantization(quantize=="gptq.int4"):
    model = GPT(config)
    
model.eval()
model = fabric.setup_module(model)
load_checkpoint(fabric, model, checkpoint_dir)

tokenizer = Tokenizer(Path('tokenizer_config'))

@torch.inference_mode()
def generate(
    model: GPT,
    idx: torch.Tensor,
    max_returned_tokens: int,
    *,
    temperature: float = 1.0,
    top_k:int = None,
    eos_id:int = None,
) -> torch.Tensor:
    """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
    The implementation of this function is modified from A. Karpathy's nanoGPT.
    Args:
        model: The model to use.
        idx: Tensor of shape (T) with indices of the prompt sequence.
        max_returned_tokens: The maximum number of tokens to return (given plus generated).
        temperature: Scales the predicted logits by 1 / temperature.
        top_k: If specified, only sample among the tokens with the k highest probabilities.
        eos_id: If specified, stop generating any more token once the <eos> token is triggered.
    """
    T = idx.size(0)
    assert max_returned_tokens > T
    if model.max_seq_length < max_returned_tokens - 1:
        # rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
        # data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
        # not support it to avoid negatively impacting the overall speed
        raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")

    device, dtype = idx.device, idx.dtype
    # create an empty tensor of the expected final shape and fill in the current tokens
    empty = torch.empty(max_returned_tokens, dtype=dtype, device=device)
    empty[:T] = idx
    idx = empty
    input_pos = torch.arange(0, T, device=device)

    # generate up to a fixed number of tokens
    for _ in range(max_returned_tokens - T):
        x = idx.index_select(0, input_pos).view(1, -1)

        # forward
        logits = model(x, input_pos)
        logits = logits[0, -1] / temperature

        # optionally crop the logits to only the top k options
        if top_k is not None:
            v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
            logits = torch.where(logits < v[[-1]], -float("Inf"), logits)

        probs = torch.nn.functional.softmax(logits, dim=-1)
        idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)

        # advance
        input_pos = input_pos[-1:] + 1

        # concatenate the new generation
        idx = idx.index_copy(0, input_pos, idx_next)

        # if <eos> token is triggered, return the output (stop generation)
        if idx_next == eos_id:
            return idx[:input_pos]  # include the EOS token

    return idx


device = 'cuda' if torch.cuda.is_available() else 'cpu'

def generate_text(input_text, temperature=0.8, max_tokens=200, top_k=None):
    encoded = tokenizer.encode(input_text, device=fabric.device)
    max_returned_tokens = encoded.size(0) + max_tokens


    with fabric.init_tensor():
        # set the max_seq_length to limit the memory usage to what we need
        model.max_seq_length = max_returned_tokens


    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)

    y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)

    return(tokenizer.decode(y))

import gradio as gr

title = "GPT from scratch"

description1 = "GPT implementation taken from <a href='https://github.com/Lightning-AI/lit-gpt'>Lit-GPT</a>. It is trained on a samples of the <a href='https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample'>RedPajama 1 trillion dataset</a> to understand how GPT's are trained and built. The github link can be found <a href='https://github.com/mkthoma/gpt_from_scratch'>here.</a>"

demo = gr.Interface(generate_text,
                    inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
                            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"),
                            gr.Slider(minimum=200, maximum=1000, step=50, value=300, label="Max Tokens"),
                            gr.Slider(minimum=10, maximum=100, step=5, value=20, label="Top K")],
                    outputs=gr.Textbox(label="Text generated", type="text"), title=title, description=description1)


demo.launch()