mnurbani's picture
Upload 12 files
02794f7 verified
raw
history blame
5.21 kB
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from PIL import Image
def run():
#Membuat title
st.title('Text-Based Twitter Sentiment Analysis')
#Tambahkan gambar
image = Image.open('twittersentiment.jpg')
st.image(image, caption = 'Twitter Sentiment')
#Membuat garis
st.markdown('----')
#Masukkan pandas dataframe
#Show dataframe
df = pd.read_csv('tweets-update.csv')
st.dataframe(df)
st.write('Source : https://www.kaggle.com/datasets/yasserh/twitter-tweets-sentiment-dataset')
st.markdown('----')
st.title('Exploratory Data Analysis')
#Bar Plot
st.write('#### Distribution of Sentiments')
fig_sentiments = plt.figure(figsize=(10, 6))
sns.countplot(x='sentiment', data=df)
plt.xlabel('Sentiment Label')
plt.ylabel('Count')
plt.title('Distribution of Sentiments')
st.pyplot(fig_sentiments)
# Positive Sentiment Tweets Bar
st.write('#### Distribution of Text Length for Positive Sentiment Tweets')
fig_length_positive = plt.figure(figsize=(14, 7))
# Handle NaN values in 'text_processed'
df['length'] = df['text_processed'].apply(lambda x: len(str(x).split()) if pd.notna(x) else 0)
ax1 = fig_length_positive.add_subplot(122)
sns.histplot(df[df['sentiment']=='positive']['length'], ax=ax1, color='green')
describe_positive = df.length[df.sentiment=='positive'].describe().to_frame().round(2)
ax2 = fig_length_positive.add_subplot(121)
ax2.axis('off')
font_size = 14
bbox = [0, 0, 1, 1]
table_positive = ax2.table(cellText=describe_positive.values, rowLabels=describe_positive.index, bbox=bbox, colLabels=describe_positive.columns)
table_positive.set_fontsize(font_size)
fig_length_positive.suptitle('Distribution of text length for positive sentiment tweets.', fontsize=16)
st.pyplot(fig_length_positive)
# negative Sentiment Tweets Bar
st.write('#### Distribution of Text Length for negative Sentiment Tweets')
fig_length_negative = plt.figure(figsize=(14, 7))
# Handle NaN values in 'text_processed'
df['length'] = df['text_processed'].apply(lambda x: len(str(x).split()) if pd.notna(x) else 0)
ax1 = fig_length_negative.add_subplot(122)
sns.histplot(df[df['sentiment']=='negative']['length'], ax=ax1, color='red')
describe_negative = df.length[df.sentiment=='negative'].describe().to_frame().round(2)
ax2 = fig_length_negative.add_subplot(121)
ax2.axis('off')
font_size = 14
bbox = [0, 0, 1, 1]
table_negative = ax2.table(cellText=describe_negative.values, rowLabels=describe_negative.index, bbox=bbox, colLabels=describe_negative.columns)
table_negative.set_fontsize(font_size)
fig_length_negative.suptitle('Distribution of text length for negative sentiment tweets.', fontsize=16)
st.pyplot(fig_length_negative)
# neutral Sentiment Tweets Bar
st.write('#### Distribution of Text Length for neutral Sentiment Tweets')
fig_length_neutral = plt.figure(figsize=(14, 7))
# Handle NaN values in 'text_processed'
df['length'] = df['text_processed'].apply(lambda x: len(str(x).split()) if pd.notna(x) else 0)
ax1 = fig_length_neutral.add_subplot(122)
sns.histplot(df[df['sentiment']=='neutral']['length'], ax=ax1, color='blue')
describe_neutral = df.length[df.sentiment=='neutral'].describe().to_frame().round(2)
ax2 = fig_length_neutral.add_subplot(121)
ax2.axis('off')
font_size = 14
bbox = [0, 0, 1, 1]
table_neutral = ax2.table(cellText=describe_neutral.values, rowLabels=describe_neutral.index, bbox=bbox, colLabels=describe_neutral.columns)
table_neutral.set_fontsize(font_size)
fig_length_neutral.suptitle('Distribution of text length for neutral sentiment tweets.', fontsize=16)
st.pyplot(fig_length_neutral)
# Membuat pie chart
st.write('#### Pie Chart - Sentiment Distribution')
labels = ['Neutral', 'Positive', 'Negative']
size = df['sentiment'].value_counts()
colors = ['lightgreen', 'lightskyblue', 'lightcoral']
explode = [0.01, 0.01, 0.1]
fig, axes = plt.subplots(figsize=(6, 5))
plt.pie(size, colors=colors, explode=explode,
labels=labels, shadow=True, startangle=90, autopct='%.2f%%')
plt.title('Sentiment Distribution', fontsize=20)
plt.legend()
st.pyplot(fig)
# #Membuat histogram
# st.write('#### Histogram of Age')
# fig = plt.figure(figsize=(15,5))
# sns.histplot(df['Overall'], bins = 30, kde = True)
# st.pyplot(fig)
# #membuat histogram berdasarkan inputan user
# st.write('#### Histogram berdasarkan input user')
# #kalo mau pake radio button, ganti selectbox jadi radio
# option = st.selectbox('Pilih Column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
# fig = plt.figure(figsize= (15,5))
# sns.histplot(df[option], bins = 30, kde = True)
# st.pyplot(fig)
# #Membuat Plotly plot
# st.write('#### Plotly Plot - ValueEUR vs Overall')
# fig = px.scatter(df, x = 'ValueEUR', y = 'Overall', hover_data = ['Name', 'Age'])
# st.plotly_chart(fig)
if __name__ == '__main__':
run()