Spaces:
Sleeping
Sleeping
Update customFunctions.py for new pipelines
#4
by
hw01558
- opened
- customFunctions.py +547 -470
customFunctions.py
CHANGED
@@ -1,470 +1,547 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.optim as optim
|
7 |
-
|
8 |
-
from
|
9 |
-
import
|
10 |
-
|
11 |
-
from
|
12 |
-
from
|
13 |
-
from
|
14 |
-
from sklearn.
|
15 |
-
from
|
16 |
-
from torch.
|
17 |
-
from
|
18 |
-
from sklearn.
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
sentences
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
self.
|
48 |
-
self.
|
49 |
-
self.
|
50 |
-
self.
|
51 |
-
self.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# https://stackoverflow.com/questions/
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
self.
|
87 |
-
self.
|
88 |
-
self.
|
89 |
-
self.
|
90 |
-
self.
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# https://stackoverflow.com/questions/
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
'
|
113 |
-
'word
|
114 |
-
'word[-
|
115 |
-
'word
|
116 |
-
'word.
|
117 |
-
'word.
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
for
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
class
|
137 |
-
def __init__(self):
|
138 |
-
self.model = None
|
139 |
-
self.embedding_dim = None
|
140 |
-
self.idf = None
|
141 |
-
self.vocab_size = None
|
142 |
-
self.vocab = None
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
self.model
|
149 |
-
self.model.
|
150 |
-
self.
|
151 |
-
self.
|
152 |
-
self.
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
token_idx = self.
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
def
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
self.
|
254 |
-
|
255 |
-
self.
|
256 |
-
self.
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
self.
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.optim as optim
|
7 |
+
from transformers import BertTokenizer, BertModel
|
8 |
+
from seqeval.metrics import accuracy_score, f1_score, classification_report
|
9 |
+
from seqeval.scheme import IOB2
|
10 |
+
import sklearn_crfsuite
|
11 |
+
from sklearn_crfsuite import metrics
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
+
from gensim.models import Word2Vec, KeyedVectors
|
14 |
+
from sklearn.pipeline import Pipeline
|
15 |
+
from sklearn.preprocessing import LabelEncoder
|
16 |
+
from torch.utils.data import Dataset, DataLoader
|
17 |
+
from torch.nn.utils.rnn import pad_sequence
|
18 |
+
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
|
19 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
20 |
+
import gensim.downloader as api
|
21 |
+
from itertools import product
|
22 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
23 |
+
from joblib import dump
|
24 |
+
|
25 |
+
|
26 |
+
class preprocess_sentences():
|
27 |
+
def __init__(self):
|
28 |
+
pass
|
29 |
+
|
30 |
+
def fit(self, X, y=None):
|
31 |
+
print('PREPROCESSING')
|
32 |
+
return self
|
33 |
+
|
34 |
+
def transform(self, X):
|
35 |
+
# X = train['tokens'], y =
|
36 |
+
sentences = X.apply(lambda x: x.tolist()).tolist()
|
37 |
+
print('--> Preprocessing complete \n', flush=True)
|
38 |
+
return sentences
|
39 |
+
|
40 |
+
EMBEDDING_DIM = 500
|
41 |
+
PAD_VALUE= -1
|
42 |
+
MAX_LENGTH = 376
|
43 |
+
BATCH_SIZE = 16
|
44 |
+
|
45 |
+
class Word2VecTransformer():
|
46 |
+
def __init__(self, vector_size = EMBEDDING_DIM, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
|
47 |
+
self.model = None
|
48 |
+
self.vector_size = vector_size
|
49 |
+
self.window = window
|
50 |
+
self.min_count = min_count
|
51 |
+
self.workers = workers
|
52 |
+
self.embedding_dim = embedding_dim
|
53 |
+
|
54 |
+
def fit(self, X, y):
|
55 |
+
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
|
56 |
+
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
|
57 |
+
print('WORD2VEC:', flush=True)
|
58 |
+
# This fits the word2vec model
|
59 |
+
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
|
60 |
+
, min_count=self.min_count, workers=self.workers)
|
61 |
+
print('--> Word2Vec Fitted', flush=True)
|
62 |
+
return self
|
63 |
+
|
64 |
+
def transform(self, X):
|
65 |
+
# This bit should transform the sentences
|
66 |
+
embedded_sentences = []
|
67 |
+
|
68 |
+
for sentence in X:
|
69 |
+
sentence_vectors = []
|
70 |
+
|
71 |
+
for word in sentence:
|
72 |
+
if word in self.model.wv:
|
73 |
+
vec = self.model.wv[word]
|
74 |
+
else:
|
75 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
76 |
+
|
77 |
+
sentence_vectors.append(vec)
|
78 |
+
|
79 |
+
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
|
80 |
+
print('--> Embeddings Complete \n', flush=True)
|
81 |
+
|
82 |
+
return embedded_sentences
|
83 |
+
|
84 |
+
class Word2VecTransformer_CRF():
|
85 |
+
def __init__(self, vector_size = EMBEDDING_DIM, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
|
86 |
+
self.model = None
|
87 |
+
self.vector_size = vector_size
|
88 |
+
self.window = window
|
89 |
+
self.min_count = min_count
|
90 |
+
self.workers = workers
|
91 |
+
self.embedding_dim = embedding_dim
|
92 |
+
|
93 |
+
def fit(self, X, y):
|
94 |
+
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
|
95 |
+
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
|
96 |
+
print('WORD2VEC:', flush=True)
|
97 |
+
# This fits the word2vec model
|
98 |
+
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
|
99 |
+
, min_count=self.min_count, workers=self.workers)
|
100 |
+
print('--> Word2Vec Fitted', flush=True)
|
101 |
+
return self
|
102 |
+
|
103 |
+
def transform(self, X):
|
104 |
+
# This bit should transform the sentences
|
105 |
+
embedded_sentences = []
|
106 |
+
|
107 |
+
for sentence in X:
|
108 |
+
sentence_vectors = []
|
109 |
+
|
110 |
+
for word in sentence:
|
111 |
+
features = {
|
112 |
+
'bias': 1.0,
|
113 |
+
'word.lower()': word.lower(),
|
114 |
+
'word[-3:]': word[-3:],
|
115 |
+
'word[-2:]': word[-2:],
|
116 |
+
'word.isupper()': word.isupper(),
|
117 |
+
'word.istitle()': word.istitle(),
|
118 |
+
'word.isdigit()': word.isdigit(),
|
119 |
+
}
|
120 |
+
if word in self.model.wv:
|
121 |
+
vec = self.model.wv[word]
|
122 |
+
else:
|
123 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
124 |
+
|
125 |
+
# https://stackoverflow.com/questions/58736548/how-to-use-word-embedding-as-features-for-crf-sklearn-crfsuite-model-training
|
126 |
+
for index in range(len(vec)):
|
127 |
+
features[f"embedding_{index}"] = vec[index]
|
128 |
+
|
129 |
+
sentence_vectors.append(features)
|
130 |
+
|
131 |
+
embedded_sentences.append(sentence_vectors)
|
132 |
+
print('--> Embeddings Complete \n', flush=True)
|
133 |
+
|
134 |
+
return embedded_sentences
|
135 |
+
|
136 |
+
class tfidfTransformer(BaseEstimator, TransformerMixin):
|
137 |
+
def __init__(self):
|
138 |
+
self.model = None
|
139 |
+
self.embedding_dim = None
|
140 |
+
self.idf = None
|
141 |
+
self.vocab_size = None
|
142 |
+
self.vocab = None
|
143 |
+
|
144 |
+
def fit(self, X, y = None):
|
145 |
+
print('TFIDF:', flush=True)
|
146 |
+
joined_sentences = [' '.join(tokens) for tokens in X]
|
147 |
+
self.model = TfidfVectorizer()
|
148 |
+
self.model.fit(joined_sentences)
|
149 |
+
self.vocab = self.model.vocabulary_
|
150 |
+
self.idf = self.model.idf_
|
151 |
+
self.vocab_size = len(self.vocab)
|
152 |
+
self.embedding_dim = self.vocab_size
|
153 |
+
print('--> TFIDF Fitted', flush=True)
|
154 |
+
return self
|
155 |
+
|
156 |
+
def transform(self, X):
|
157 |
+
|
158 |
+
embedded = []
|
159 |
+
for sentence in X:
|
160 |
+
sent_vecs = []
|
161 |
+
token_counts = {}
|
162 |
+
for word in sentence:
|
163 |
+
token_counts[word] = token_counts.get(word, 0) + 1
|
164 |
+
|
165 |
+
sent_len = len(sentence)
|
166 |
+
for word in sentence:
|
167 |
+
vec = np.zeros(self.vocab_size)
|
168 |
+
if word in self.vocab:
|
169 |
+
tf = token_counts[word] / sent_len
|
170 |
+
token_idx = self.vocab[word]
|
171 |
+
vec[token_idx] = tf * self.idf[token_idx]
|
172 |
+
sent_vecs.append(vec)
|
173 |
+
embedded.append(torch.tensor(sent_vecs, dtype=torch.float32))
|
174 |
+
print('--> Embeddings Complete \n', flush=True)
|
175 |
+
|
176 |
+
|
177 |
+
return embedded
|
178 |
+
|
179 |
+
class GloveTransformer(BaseEstimator, TransformerMixin):
|
180 |
+
def __init__(self):
|
181 |
+
self.model = None
|
182 |
+
self.embedding_dim = 300
|
183 |
+
|
184 |
+
def fit(self, X, y=None):
|
185 |
+
print('GLOVE', flush = True)
|
186 |
+
self.model = api.load('glove-wiki-gigaword-300')
|
187 |
+
print('--> Glove Downloaded', flush=True)
|
188 |
+
return self
|
189 |
+
|
190 |
+
def transform(self, X):
|
191 |
+
# This bit should transform the sentences
|
192 |
+
print('--> Beginning embeddings', flush=True)
|
193 |
+
embedded_sentences = []
|
194 |
+
|
195 |
+
for sentence in X:
|
196 |
+
sentence_vectors = []
|
197 |
+
|
198 |
+
for word in sentence:
|
199 |
+
if word in self.model:
|
200 |
+
vec = self.model[word]
|
201 |
+
else:
|
202 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
203 |
+
|
204 |
+
sentence_vectors.append(vec)
|
205 |
+
|
206 |
+
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
|
207 |
+
print('--> Embeddings Complete \n', flush=True)
|
208 |
+
|
209 |
+
return embedded_sentences
|
210 |
+
|
211 |
+
class Bio2VecTransformer():
|
212 |
+
def __init__(self, vector_size = 200, window = 5, min_count = 1, workers = 1, embedding_dim=200):
|
213 |
+
self.model = None
|
214 |
+
self.vector_size = vector_size
|
215 |
+
self.window = window
|
216 |
+
self.min_count = min_count
|
217 |
+
self.workers = workers
|
218 |
+
self.embedding_dim = embedding_dim
|
219 |
+
|
220 |
+
def fit(self, X, y):
|
221 |
+
print('BIO2VEC:', flush=True)
|
222 |
+
# https://stackoverflow.com/questions/58055415/how-to-load-bio2vec-in-gensim
|
223 |
+
self.model = Bio2VecModel
|
224 |
+
print('--> BIO2VEC Fitted', flush=True)
|
225 |
+
return self
|
226 |
+
|
227 |
+
def transform(self, X):
|
228 |
+
# This bit should transform the sentences
|
229 |
+
embedded_sentences = []
|
230 |
+
|
231 |
+
for sentence in X:
|
232 |
+
sentence_vectors = []
|
233 |
+
|
234 |
+
for word in sentence:
|
235 |
+
if word in self.model:
|
236 |
+
vec = self.model[word]
|
237 |
+
else:
|
238 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
239 |
+
|
240 |
+
sentence_vectors.append(vec)
|
241 |
+
|
242 |
+
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
|
243 |
+
print('--> Embeddings Complete \n', flush=True)
|
244 |
+
|
245 |
+
return embedded_sentences
|
246 |
+
|
247 |
+
class BiLSTM_NER(nn.Module):
|
248 |
+
def __init__(self,input_dim, hidden_dim, tagset_size):
|
249 |
+
super(BiLSTM_NER, self).__init__()
|
250 |
+
|
251 |
+
# Embedding layer
|
252 |
+
#Freeze= false means that it will fine tune
|
253 |
+
#self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze = False, padding_idx=-1)
|
254 |
+
|
255 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
|
256 |
+
self.fc = nn.Linear(hidden_dim*2, tagset_size)
|
257 |
+
|
258 |
+
def forward(self, sentences):
|
259 |
+
#embeds = self.embedding(sentences)
|
260 |
+
lstm_out, _ = self.lstm(sentences)
|
261 |
+
tag_scores = self.fc(lstm_out)
|
262 |
+
|
263 |
+
return tag_scores
|
264 |
+
|
265 |
+
def pad(batch):
|
266 |
+
# batch is a list of (X, y) pairs
|
267 |
+
X_batch, y_batch = zip(*batch)
|
268 |
+
|
269 |
+
# Convert to tensors
|
270 |
+
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in X_batch]
|
271 |
+
y_batch = [torch.tensor(seq, dtype=torch.long) for seq in y_batch]
|
272 |
+
|
273 |
+
# Pad sequences
|
274 |
+
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
|
275 |
+
y_padded = pad_sequence(y_batch, batch_first=True, padding_value=PAD_VALUE)
|
276 |
+
|
277 |
+
return X_padded, y_padded
|
278 |
+
|
279 |
+
def pred_pad(batch):
|
280 |
+
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in batch]
|
281 |
+
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
|
282 |
+
return X_padded
|
283 |
+
|
284 |
+
class Ner_Dataset(Dataset):
|
285 |
+
def __init__(self, X, y):
|
286 |
+
self.X = X
|
287 |
+
self.y = y
|
288 |
+
|
289 |
+
def __len__(self):
|
290 |
+
return len(self.X)
|
291 |
+
|
292 |
+
def __getitem__(self, idx):
|
293 |
+
return self.X[idx], self.y[idx]
|
294 |
+
|
295 |
+
|
296 |
+
class LSTM(BaseEstimator, ClassifierMixin):
|
297 |
+
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
|
298 |
+
self.embedding_dim = embedding_dim
|
299 |
+
self.hidden_dim = hidden_dim
|
300 |
+
self.epochs = epochs
|
301 |
+
self.learning_rate = learning_rate
|
302 |
+
self.tag2idx = tag2idx
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
def fit(self, embedded, encoded_tags):
|
307 |
+
#print('LSTM started:', flush=True)
|
308 |
+
data = Ner_Dataset(embedded, encoded_tags)
|
309 |
+
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
|
310 |
+
|
311 |
+
self.model = self.train_LSTM(train_loader)
|
312 |
+
#print('--> Epochs: ', self.epochs, flush=True)
|
313 |
+
#print('--> Learning Rate: ', self.learning_rate)
|
314 |
+
return self
|
315 |
+
|
316 |
+
def predict(self, X):
|
317 |
+
# Switch to evaluation mode
|
318 |
+
|
319 |
+
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
|
320 |
+
|
321 |
+
self.model.eval()
|
322 |
+
predictions = []
|
323 |
+
|
324 |
+
# Iterate through test data
|
325 |
+
with torch.no_grad():
|
326 |
+
for X_batch in test_loader:
|
327 |
+
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
328 |
+
|
329 |
+
tag_scores = self.model(X_batch)
|
330 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
331 |
+
|
332 |
+
flattened_pred = predicted_tags.view(-1)
|
333 |
+
|
334 |
+
predictions.append(list(flattened_pred.cpu().numpy()))
|
335 |
+
|
336 |
+
|
337 |
+
#print('before concat',predictions)
|
338 |
+
#predictions = np.concatenate(predictions)
|
339 |
+
#print('after concat',predictions)
|
340 |
+
|
341 |
+
tag_encoder = LabelEncoder()
|
342 |
+
tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])
|
343 |
+
|
344 |
+
str_pred = []
|
345 |
+
for sentence in predictions:
|
346 |
+
str_sentence = tag_encoder.inverse_transform(sentence)
|
347 |
+
str_pred.append(list(str_sentence))
|
348 |
+
return str_pred
|
349 |
+
|
350 |
+
|
351 |
+
def train_LSTM(self, train_loader):
|
352 |
+
|
353 |
+
input_dim = self.embedding_dim
|
354 |
+
# Instantiate the lstm_model
|
355 |
+
lstm_model = BiLSTM_NER(input_dim, hidden_dim=self.hidden_dim, tagset_size=len(self.tag2idx))
|
356 |
+
lstm_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
357 |
+
|
358 |
+
# Loss function and optimizer
|
359 |
+
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
|
360 |
+
optimizer = optim.Adam(lstm_model.parameters(), lr=self.learning_rate)
|
361 |
+
#print('--> Training LSTM')
|
362 |
+
|
363 |
+
# Training loop
|
364 |
+
for epoch in range(self.epochs):
|
365 |
+
total_loss = 0
|
366 |
+
total_correct = 0
|
367 |
+
total_words = 0
|
368 |
+
lstm_model.train() # Set model to training mode
|
369 |
+
|
370 |
+
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
371 |
+
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
372 |
+
|
373 |
+
# Zero gradients
|
374 |
+
optimizer.zero_grad()
|
375 |
+
|
376 |
+
# Forward pass
|
377 |
+
tag_scores = lstm_model(X_batch)
|
378 |
+
|
379 |
+
# Reshape and compute loss (ignore padded values)
|
380 |
+
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
|
381 |
+
|
382 |
+
# Backward pass and optimization
|
383 |
+
loss.backward()
|
384 |
+
optimizer.step()
|
385 |
+
|
386 |
+
total_loss += loss.item()
|
387 |
+
|
388 |
+
# Compute accuracy for this batch
|
389 |
+
# Get the predicted tags (index of max score)
|
390 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
391 |
+
|
392 |
+
# Flatten the tensors to compare word-by-word
|
393 |
+
flattened_pred = predicted_tags.view(-1)
|
394 |
+
flattened_true = y_batch.view(-1)
|
395 |
+
|
396 |
+
# Exclude padding tokens from the accuracy calculation
|
397 |
+
mask = flattened_true != PAD_VALUE
|
398 |
+
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
|
399 |
+
|
400 |
+
# Count the total words in the batch (ignoring padding)
|
401 |
+
total_words_batch = mask.sum().item()
|
402 |
+
|
403 |
+
# Update total correct and total words
|
404 |
+
total_correct += correct
|
405 |
+
total_words += total_words_batch
|
406 |
+
|
407 |
+
avg_loss = total_loss / len(train_loader)
|
408 |
+
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
|
409 |
+
|
410 |
+
#print(f' ==> Epoch {epoch + 1}/{self.epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
|
411 |
+
|
412 |
+
return lstm_model
|
413 |
+
|
414 |
+
|
415 |
+
# Define the FeedForward NN Model
|
416 |
+
class FeedForwardNN_NER(nn.Module):
|
417 |
+
def __init__(self, embedding_dim, hidden_dim, tagset_size):
|
418 |
+
super(FeedForwardNN_NER, self).__init__()
|
419 |
+
self.fc1 = nn.Linear(embedding_dim, hidden_dim)
|
420 |
+
self.relu = nn.ReLU()
|
421 |
+
self.fc2 = nn.Linear(hidden_dim, tagset_size)
|
422 |
+
|
423 |
+
def forward(self, x):
|
424 |
+
x = self.fc1(x)
|
425 |
+
x = self.relu(x)
|
426 |
+
logits = self.fc2(x)
|
427 |
+
return logits
|
428 |
+
|
429 |
+
|
430 |
+
|
431 |
+
class FeedforwardNN(BaseEstimator, ClassifierMixin):
|
432 |
+
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
|
433 |
+
self.embedding_dim = embedding_dim
|
434 |
+
self.hidden_dim = hidden_dim
|
435 |
+
self.epochs = epochs
|
436 |
+
self.learning_rate = learning_rate
|
437 |
+
self.tag2idx = tag2idx
|
438 |
+
|
439 |
+
|
440 |
+
|
441 |
+
def fit(self, embedded, encoded_tags):
|
442 |
+
print('Feed Forward NN: ', flush=True)
|
443 |
+
data = Ner_Dataset(embedded, encoded_tags)
|
444 |
+
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
|
445 |
+
|
446 |
+
self.model = self.train_FF(train_loader)
|
447 |
+
print('--> Feed Forward trained', flush=True)
|
448 |
+
return self
|
449 |
+
|
450 |
+
def predict(self, X):
|
451 |
+
# Switch to evaluation mode
|
452 |
+
|
453 |
+
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
|
454 |
+
|
455 |
+
self.model.eval()
|
456 |
+
predictions = []
|
457 |
+
|
458 |
+
# Iterate through test data
|
459 |
+
with torch.no_grad():
|
460 |
+
for X_batch in test_loader:
|
461 |
+
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
462 |
+
|
463 |
+
tag_scores = self.model(X_batch)
|
464 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
465 |
+
|
466 |
+
# Flatten the tensors to compare word-by-word
|
467 |
+
flattened_pred = predicted_tags.view(-1)
|
468 |
+
predictions.append(flattened_pred.cpu().numpy())
|
469 |
+
|
470 |
+
str_pred = []
|
471 |
+
for sentence in predictions:
|
472 |
+
str_sentence = tag_encoder.inverse_transform(sentence)
|
473 |
+
str_pred.append(list(str_sentence))
|
474 |
+
return str_pred
|
475 |
+
|
476 |
+
|
477 |
+
def train_FF(self, train_loader):
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
# Instantiate the lstm_model
|
482 |
+
ff_model = FeedForwardNN_NER(self.embedding_dim, hidden_dim=self.hidden_dim, tagset_size=len(self.tag2idx))
|
483 |
+
ff_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
484 |
+
|
485 |
+
# Loss function and optimizer
|
486 |
+
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
|
487 |
+
optimizer = optim.Adam(ff_model.parameters(), lr=self.learning_rate)
|
488 |
+
print('--> Training FF')
|
489 |
+
|
490 |
+
# Training loop
|
491 |
+
for epoch in range(self.epochs):
|
492 |
+
total_loss = 0
|
493 |
+
total_correct = 0
|
494 |
+
total_words = 0
|
495 |
+
ff_model.train() # Set model to training mode
|
496 |
+
|
497 |
+
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
498 |
+
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
499 |
+
|
500 |
+
# Zero gradients
|
501 |
+
optimizer.zero_grad()
|
502 |
+
|
503 |
+
# Forward pass
|
504 |
+
tag_scores = ff_model(X_batch)
|
505 |
+
|
506 |
+
# Reshape and compute loss (ignore padded values)
|
507 |
+
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
|
508 |
+
|
509 |
+
# Backward pass and optimization
|
510 |
+
loss.backward()
|
511 |
+
optimizer.step()
|
512 |
+
|
513 |
+
total_loss += loss.item()
|
514 |
+
|
515 |
+
# Compute accuracy for this batch
|
516 |
+
# Get the predicted tags (index of max score)
|
517 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
518 |
+
|
519 |
+
# Flatten the tensors to compare word-by-word
|
520 |
+
flattened_pred = predicted_tags.view(-1)
|
521 |
+
flattened_true = y_batch.view(-1)
|
522 |
+
|
523 |
+
# Exclude padding tokens from the accuracy calculation
|
524 |
+
mask = flattened_true != PAD_VALUE
|
525 |
+
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
|
526 |
+
|
527 |
+
# Count the total words in the batch (ignoring padding)
|
528 |
+
total_words_batch = mask.sum().item()
|
529 |
+
|
530 |
+
# Update total correct and total words
|
531 |
+
total_correct += correct
|
532 |
+
total_words += total_words_batch
|
533 |
+
|
534 |
+
avg_loss = total_loss / len(train_loader)
|
535 |
+
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
|
536 |
+
|
537 |
+
print(f' ==> Epoch {epoch + 1}/{self.epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
|
538 |
+
|
539 |
+
return ff_model
|
540 |
+
|
541 |
+
crf = sklearn_crfsuite.CRF(
|
542 |
+
algorithm='lbfgs',
|
543 |
+
c1=0.1,
|
544 |
+
c2=0.1,
|
545 |
+
max_iterations=100,
|
546 |
+
all_possible_transitions=True)
|
547 |
+
|