mobenta's picture
Update app.py
ec7237c verified
raw
history blame
11.9 kB
import torch
import yfinance as yf
import matplotlib.pyplot as plt
import mplfinance as mpf
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import datetime
import logging
from transformers import AutoProcessor, AutoModelForPreTraining
import tempfile
import os
import spaces
import pandas as pd
# Configure logging
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load the chart_analysis model and processor
processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
@spaces.GPU
def predict(image, input_text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
image = image.convert("RGB")
inputs = processor(text=input_text, images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
prompt_length = inputs['input_ids'].shape[1]
generate_ids = model.generate(**inputs, max_new_tokens=512)
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output_text
def fetch_stock_data(ticker='TSLA', start='2010-01-01', end=None, interval='1d'):
if end is None:
end = datetime.datetime.now().strftime('%Y-%m-%d')
try:
logging.debug(f"Fetching data for {ticker} from {start} to {end} with interval {interval}")
stock = yf.Ticker(ticker)
data = stock.history(start=start, end=end, interval=interval)
if data.empty:
logging.warning(f"No data fetched for {ticker} in the range {start} to {end}")
raise ValueError(f"No data available for {ticker} in the range {start} to {end}")
logging.debug(f"Fetched data with {len(data)} rows")
return data
except Exception as e:
logging.error(f"Error fetching data: {e}")
raise
def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indicators=None):
try:
logging.debug(f"Creating chart for {ticker} with timeframe {timeframe} and saving to {filename}")
title = f"{ticker.upper()} Price Data (Timeframe: {timeframe})"
plt.rcParams["axes.titlesize"] = 10
my_style = mpf.make_mpf_style(base_mpf_style='charles')
# Calculate indicators if selected
addplot = []
if indicators:
if 'RSI' in indicators:
delta = data['Close'].diff(1)
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
avg_gain = gain.rolling(window=14).mean()
avg_loss = loss.rolling(window=14).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
addplot.append(mpf.make_addplot(rsi, panel=2, color='orange', ylabel='RSI'))
if 'SMA21' in indicators:
logging.debug("Calculating SMA 21")
sma_21 = data['Close'].rolling(window=21).mean()
addplot.append(mpf.make_addplot(sma_21, color='purple', linestyle='dashed'))
if 'SMA50' in indicators:
logging.debug("Calculating SMA 50")
sma_50 = data['Close'].rolling(window=50).mean()
addplot.append(mpf.make_addplot(sma_50, color='orange', linestyle='dashed'))
if 'SMA200' in indicators:
logging.debug("Calculating SMA 200")
sma_200 = data['Close'].rolling(window=200).mean()
addplot.append(mpf.make_addplot(sma_200, color='brown', linestyle='dashed'))
if 'VWAP' in indicators:
logging.debug("Calculating VWAP")
vwap = (data['Volume'] * (data['High'] + data['Low'] + data['Close']) / 3).cumsum() / data['Volume'].cumsum()
addplot.append(mpf.make_addplot(vwap, color='blue', linestyle='dashed'))
if 'Bollinger Bands' in indicators:
logging.debug("Calculating Bollinger Bands")
sma = data['Close'].rolling(window=20).mean()
std = data['Close'].rolling(window=20).std()
upper_band = sma + (std * 2)
lower_band = sma - (std * 2)
addplot.append(mpf.make_addplot(upper_band, color='green', linestyle='dashed'))
addplot.append(mpf.make_addplot(lower_band, color='green', linestyle='dashed'))
fig, axlist = mpf.plot(data, type='candle', style=my_style, volume=True, addplot=addplot, returnfig=True)
fig.suptitle(title, y=0.98)
# Save chart image
fig.savefig(filename, dpi=300)
plt.close(fig)
# Open and add financial data to the image
image = Image.open(filename)
draw = ImageDraw.Draw(image)
font = ImageFont.load_default() # Use default font, you can also use custom fonts if available
# Financial metrics to add
metrics = {
"Ticker": ticker,
"Latest Close": f"${data['Close'].iloc[-1]:,.2f}",
"Volume": f"{data['Volume'].iloc[-1]:,.0f}"
}
# Add additional metrics if indicators are present
if 'SMA21' in indicators:
metrics["SMA 21"] = f"${data['Close'].rolling(window=21).mean().iloc[-1]:,.2f}"
if 'SMA50' in indicators:
metrics["SMA 50"] = f"${data['Close'].rolling(window=50).mean().iloc[-1]:,.2f}"
if 'SMA200' in indicators:
metrics["SMA 200"] = f"${data['Close'].rolling(window=200).mean().iloc[-1]:,.2f}"
# Draw metrics on the image
y_text = image.height - 50 # Starting y position for text
for key, value in metrics.items():
text = f"{key}: {value}"
draw.text((10, y_text), text, font=font, fill=(255, 255, 255)) # White color text
y_text += 20
# Resize image
new_size = (image.width * 3, image.height * 3)
resized_image = image.resize(new_size, Image.LANCZOS)
resized_image.save(filename)
logging.debug(f"Resized image with timeframe {timeframe} and ticker {ticker} saved to {filename}")
except Exception as e:
logging.error(f"Error creating or resizing chart: {e}")
raise
def combine_images(image_paths, output_path='combined_chart.png'):
try:
logging.debug(f"Combining images {image_paths} into {output_path}")
images = [Image.open(path) for path in image_paths]
# Calculate total width and max height for combined image
total_width = sum(img.width for img in images)
max_height = max(img.height for img in images)
combined_image = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in images:
combined_image.paste(img, (x_offset, 0))
x_offset += img.width
combined_image.save(output_path)
logging.debug(f"Combined image saved to {output_path}")
return output_path
except Exception as e:
logging.error(f"Error combining images: {e}")
raise
def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
try:
logging.debug(f"Starting gradio_interface with tickers: {ticker1}, {ticker2}, {ticker3}, {ticker4}, start_date: {start_date}, end_date: {end_date}, query: {query}, analysis_type: {analysis_type}, interval: {interval}")
tickers = [ticker1, ticker2, ticker3, ticker4]
chart_paths = []
for i, ticker in enumerate(tickers):
if ticker:
data = fetch_stock_data(ticker, start=start_date, end=end_date, interval=interval)
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_chart:
chart_path = temp_chart.name
create_stock_chart(data, ticker, chart_path, timeframe=interval, indicators=indicators)
chart_paths.append(chart_path)
if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
combined_chart_path = temp_combined_chart.name
combine_images(chart_paths, combined_chart_path)
insights = predict(Image.open(combined_chart_path), query)
return insights, combined_chart_path
# No comparative analysis, just return the single chart
if chart_paths:
insights = predict(Image.open(chart_paths[0]), query)
return insights, chart_paths[0]
else:
return "No tickers provided.", None
except Exception as e:
logging.error(f"Error in Gradio interface: {e}")
return f"Error processing image or query: {e}", None
def gradio_app():
with gr.Blocks() as demo:
gr.Markdown("""
## 📈Stock Analysis Dashboard
This application provides a comprehensive stock analysis tool that allows users to input up to four stock tickers, specify date ranges, and select various financial indicators. The core functionalities include:
1. **Data Fetching and Chart Creation**: Historical stock data is fetched from Yahoo Finance, and candlestick charts are generated with optional financial indicators like RSI, SMA, VWAP, and Bollinger Bands.
2. **Text Analysis and Insights Generation**: The application uses a pre-trained model based on the **Paligema** architecture to analyze the input chart and text query, generating insightful analysis based on the provided financial data and context.
3. **User Interface**: Users can interactively select stocks, date ranges, intervals, and indicators. The app also supports the analysis of single tickers or comparative analysis across multiple tickers.
4. **Logging and Debugging**: Detailed logging helps in debugging and tracking the application's processes.
5. **Enhanced Image Processing**: The app adds financial metrics and annotations to the generated charts, ensuring clear presentation of data.
This tool leverages the Paligema model to provide detailed insights into stock market trends, offering an interactive and educational experience for users.
""")
with gr.Row():
ticker1 = gr.Textbox(label="Primary Ticker", value="GC=F")
ticker2 = gr.Textbox(label="Secondary Ticker", value="CL=F")
ticker3 = gr.Textbox(label="Third Ticker", value="SPY")
ticker4 = gr.Textbox(label="Fourth Ticker", value="EURUSD=X")
with gr.Row():
start_date = gr.Textbox(label="Start Date", value="2022-01-01")
end_date = gr.Textbox(label="End Date", value=datetime.datetime.now().strftime('%Y-%m-%d'))
interval = gr.Dropdown(label="Interval", choices=['1d', '1wk', '1mo'], value='1d')
with gr.Row():
indicators = gr.CheckboxGroup(label="Indicators", choices=['RSI', 'SMA21', 'SMA50', 'SMA200', 'VWAP', 'Bollinger Bands'], value=['SMA21', 'SMA50'])
analysis_type = gr.Radio(label="Analysis Type", choices=['Single Ticker', 'Comparative Analysis'], value='Single Ticker')
query = gr.Textbox(label="Analysis Query", value="Analyze the price trends.")
analyze_button = gr.Button("Analyze")
output_image = gr.Image(label="Stock Chart")
output_text = gr.Textbox(label="Generated Insights", lines=5)
analyze_button.click(
fn=gradio_interface,
inputs=[ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators],
outputs=[output_text, output_image]
)
demo.launch()
if __name__ == "__main__":
gradio_app()