Spaces:
Runtime error
Runtime error
File size: 11,856 Bytes
4165151 35c1063 ef65105 44829cc 35c1063 454c94e 2f16ed3 35c1063 ff010a2 454c94e 4165151 ff010a2 da9ddef ff010a2 454c94e 5996956 ff010a2 5996956 454c94e 5996956 4165151 454c94e 4165151 8bf799e 4165151 8bf799e 4165151 9c180e1 4165151 9c180e1 8bf799e 7496630 8bf799e 16aac73 9c180e1 44829cc 16aac73 4165151 44829cc 4165151 44829cc 9c180e1 44829cc 4165151 44829cc ff010a2 4165151 ff010a2 4165151 44829cc 4165151 ff010a2 f283d6a ff010a2 44829cc ff010a2 da9ddef 44829cc ff010a2 44829cc 4165151 44829cc 4165151 ec7237c 44829cc 72f515a 44829cc 4165151 44829cc 4165151 44829cc 1ffb260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import torch
import yfinance as yf
import matplotlib.pyplot as plt
import mplfinance as mpf
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import datetime
import logging
from transformers import AutoProcessor, AutoModelForPreTraining
import tempfile
import os
import spaces
import pandas as pd
# Configure logging
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load the chart_analysis model and processor
processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
@spaces.GPU
def predict(image, input_text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
image = image.convert("RGB")
inputs = processor(text=input_text, images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
prompt_length = inputs['input_ids'].shape[1]
generate_ids = model.generate(**inputs, max_new_tokens=512)
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output_text
def fetch_stock_data(ticker='TSLA', start='2010-01-01', end=None, interval='1d'):
if end is None:
end = datetime.datetime.now().strftime('%Y-%m-%d')
try:
logging.debug(f"Fetching data for {ticker} from {start} to {end} with interval {interval}")
stock = yf.Ticker(ticker)
data = stock.history(start=start, end=end, interval=interval)
if data.empty:
logging.warning(f"No data fetched for {ticker} in the range {start} to {end}")
raise ValueError(f"No data available for {ticker} in the range {start} to {end}")
logging.debug(f"Fetched data with {len(data)} rows")
return data
except Exception as e:
logging.error(f"Error fetching data: {e}")
raise
def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indicators=None):
try:
logging.debug(f"Creating chart for {ticker} with timeframe {timeframe} and saving to {filename}")
title = f"{ticker.upper()} Price Data (Timeframe: {timeframe})"
plt.rcParams["axes.titlesize"] = 10
my_style = mpf.make_mpf_style(base_mpf_style='charles')
# Calculate indicators if selected
addplot = []
if indicators:
if 'RSI' in indicators:
delta = data['Close'].diff(1)
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
avg_gain = gain.rolling(window=14).mean()
avg_loss = loss.rolling(window=14).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
addplot.append(mpf.make_addplot(rsi, panel=2, color='orange', ylabel='RSI'))
if 'SMA21' in indicators:
logging.debug("Calculating SMA 21")
sma_21 = data['Close'].rolling(window=21).mean()
addplot.append(mpf.make_addplot(sma_21, color='purple', linestyle='dashed'))
if 'SMA50' in indicators:
logging.debug("Calculating SMA 50")
sma_50 = data['Close'].rolling(window=50).mean()
addplot.append(mpf.make_addplot(sma_50, color='orange', linestyle='dashed'))
if 'SMA200' in indicators:
logging.debug("Calculating SMA 200")
sma_200 = data['Close'].rolling(window=200).mean()
addplot.append(mpf.make_addplot(sma_200, color='brown', linestyle='dashed'))
if 'VWAP' in indicators:
logging.debug("Calculating VWAP")
vwap = (data['Volume'] * (data['High'] + data['Low'] + data['Close']) / 3).cumsum() / data['Volume'].cumsum()
addplot.append(mpf.make_addplot(vwap, color='blue', linestyle='dashed'))
if 'Bollinger Bands' in indicators:
logging.debug("Calculating Bollinger Bands")
sma = data['Close'].rolling(window=20).mean()
std = data['Close'].rolling(window=20).std()
upper_band = sma + (std * 2)
lower_band = sma - (std * 2)
addplot.append(mpf.make_addplot(upper_band, color='green', linestyle='dashed'))
addplot.append(mpf.make_addplot(lower_band, color='green', linestyle='dashed'))
fig, axlist = mpf.plot(data, type='candle', style=my_style, volume=True, addplot=addplot, returnfig=True)
fig.suptitle(title, y=0.98)
# Save chart image
fig.savefig(filename, dpi=300)
plt.close(fig)
# Open and add financial data to the image
image = Image.open(filename)
draw = ImageDraw.Draw(image)
font = ImageFont.load_default() # Use default font, you can also use custom fonts if available
# Financial metrics to add
metrics = {
"Ticker": ticker,
"Latest Close": f"${data['Close'].iloc[-1]:,.2f}",
"Volume": f"{data['Volume'].iloc[-1]:,.0f}"
}
# Add additional metrics if indicators are present
if 'SMA21' in indicators:
metrics["SMA 21"] = f"${data['Close'].rolling(window=21).mean().iloc[-1]:,.2f}"
if 'SMA50' in indicators:
metrics["SMA 50"] = f"${data['Close'].rolling(window=50).mean().iloc[-1]:,.2f}"
if 'SMA200' in indicators:
metrics["SMA 200"] = f"${data['Close'].rolling(window=200).mean().iloc[-1]:,.2f}"
# Draw metrics on the image
y_text = image.height - 50 # Starting y position for text
for key, value in metrics.items():
text = f"{key}: {value}"
draw.text((10, y_text), text, font=font, fill=(255, 255, 255)) # White color text
y_text += 20
# Resize image
new_size = (image.width * 3, image.height * 3)
resized_image = image.resize(new_size, Image.LANCZOS)
resized_image.save(filename)
logging.debug(f"Resized image with timeframe {timeframe} and ticker {ticker} saved to {filename}")
except Exception as e:
logging.error(f"Error creating or resizing chart: {e}")
raise
def combine_images(image_paths, output_path='combined_chart.png'):
try:
logging.debug(f"Combining images {image_paths} into {output_path}")
images = [Image.open(path) for path in image_paths]
# Calculate total width and max height for combined image
total_width = sum(img.width for img in images)
max_height = max(img.height for img in images)
combined_image = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in images:
combined_image.paste(img, (x_offset, 0))
x_offset += img.width
combined_image.save(output_path)
logging.debug(f"Combined image saved to {output_path}")
return output_path
except Exception as e:
logging.error(f"Error combining images: {e}")
raise
def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
try:
logging.debug(f"Starting gradio_interface with tickers: {ticker1}, {ticker2}, {ticker3}, {ticker4}, start_date: {start_date}, end_date: {end_date}, query: {query}, analysis_type: {analysis_type}, interval: {interval}")
tickers = [ticker1, ticker2, ticker3, ticker4]
chart_paths = []
for i, ticker in enumerate(tickers):
if ticker:
data = fetch_stock_data(ticker, start=start_date, end=end_date, interval=interval)
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_chart:
chart_path = temp_chart.name
create_stock_chart(data, ticker, chart_path, timeframe=interval, indicators=indicators)
chart_paths.append(chart_path)
if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
combined_chart_path = temp_combined_chart.name
combine_images(chart_paths, combined_chart_path)
insights = predict(Image.open(combined_chart_path), query)
return insights, combined_chart_path
# No comparative analysis, just return the single chart
if chart_paths:
insights = predict(Image.open(chart_paths[0]), query)
return insights, chart_paths[0]
else:
return "No tickers provided.", None
except Exception as e:
logging.error(f"Error in Gradio interface: {e}")
return f"Error processing image or query: {e}", None
def gradio_app():
with gr.Blocks() as demo:
gr.Markdown("""
## 📈Stock Analysis Dashboard
This application provides a comprehensive stock analysis tool that allows users to input up to four stock tickers, specify date ranges, and select various financial indicators. The core functionalities include:
1. **Data Fetching and Chart Creation**: Historical stock data is fetched from Yahoo Finance, and candlestick charts are generated with optional financial indicators like RSI, SMA, VWAP, and Bollinger Bands.
2. **Text Analysis and Insights Generation**: The application uses a pre-trained model based on the **Paligema** architecture to analyze the input chart and text query, generating insightful analysis based on the provided financial data and context.
3. **User Interface**: Users can interactively select stocks, date ranges, intervals, and indicators. The app also supports the analysis of single tickers or comparative analysis across multiple tickers.
4. **Logging and Debugging**: Detailed logging helps in debugging and tracking the application's processes.
5. **Enhanced Image Processing**: The app adds financial metrics and annotations to the generated charts, ensuring clear presentation of data.
This tool leverages the Paligema model to provide detailed insights into stock market trends, offering an interactive and educational experience for users.
""")
with gr.Row():
ticker1 = gr.Textbox(label="Primary Ticker", value="GC=F")
ticker2 = gr.Textbox(label="Secondary Ticker", value="CL=F")
ticker3 = gr.Textbox(label="Third Ticker", value="SPY")
ticker4 = gr.Textbox(label="Fourth Ticker", value="EURUSD=X")
with gr.Row():
start_date = gr.Textbox(label="Start Date", value="2022-01-01")
end_date = gr.Textbox(label="End Date", value=datetime.datetime.now().strftime('%Y-%m-%d'))
interval = gr.Dropdown(label="Interval", choices=['1d', '1wk', '1mo'], value='1d')
with gr.Row():
indicators = gr.CheckboxGroup(label="Indicators", choices=['RSI', 'SMA21', 'SMA50', 'SMA200', 'VWAP', 'Bollinger Bands'], value=['SMA21', 'SMA50'])
analysis_type = gr.Radio(label="Analysis Type", choices=['Single Ticker', 'Comparative Analysis'], value='Single Ticker')
query = gr.Textbox(label="Analysis Query", value="Analyze the price trends.")
analyze_button = gr.Button("Analyze")
output_image = gr.Image(label="Stock Chart")
output_text = gr.Textbox(label="Generated Insights", lines=5)
analyze_button.click(
fn=gradio_interface,
inputs=[ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators],
outputs=[output_text, output_image]
)
demo.launch()
if __name__ == "__main__":
gradio_app()
|