File size: 2,229 Bytes
3af157b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import streamlit as st
from llm import load_llm, response_generator
from vector_store import load_vector_store, process_pdf
from uuid import uuid4

# repo_id = "Qwen/Qwen2.5-0.5B-Instruct-GGUF"
# filename = "qwen2.5-0.5b-instruct-q8_0.gguf"
repo_id = "MaziyarPanahi/Qwen2.5-7B-Instruct-GGUF"
filename = "Qwen2.5-7B-Instruct.Q4_K_S.gguf"

llm = load_llm(repo_id, filename)

st.title("PDF QA")
# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        if message["role"] == "user":
            st.markdown(message["content"])
        else:
            st.code(message["content"])

# Accept user input
if prompt := st.chat_input("What is up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        vector_store = load_vector_store()
        retriever = vector_store.as_retriever()
        docs = retriever.get_relevant_documents(prompt)

        response = response_generator(llm, st.session_state.messages, prompt, retriever)

        st.markdown(response["answer"])

    # Add assistant response to chat history
    st.session_state.messages.append(
        {"role": "assistant", "content": response["answer"]}
    )

with st.sidebar:
    st.title("PDFs")
    st.write("Upload your pdfs here")
    uploaded_files = st.file_uploader(
        "Choose a PDF file", accept_multiple_files=True, type="pdf"
    )
    if uploaded_files is not None:
        vector_store = load_vector_store()
        for uploaded_file in uploaded_files:
            temp_file = f"./temp/{uploaded_file.name}-{uuid4()}.pdf"
            with open(temp_file, "wb") as file:
                file.write(uploaded_file.getvalue())

            st.write("filename:", uploaded_file.name)
            process_pdf(temp_file, vector_store)
            st.success("PDFs uploaded successfully. ✅")