wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
10.4 kB
from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder, SDXLMotionModel
from ..models.kolors_text_encoder import ChatGLMModel
from ..models.model_manager import ModelManager
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import SDXLPrompter, KolorsPrompter
from ..schedulers import EnhancedDDIMScheduler
from .sdxl_image import SDXLImagePipeline
from .dancer import lets_dance_xl
from typing import List
import torch
from tqdm import tqdm
class SDXLVideoPipeline(SDXLImagePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear")
self.prompter = SDXLPrompter()
# models
self.text_encoder: SDXLTextEncoder = None
self.text_encoder_2: SDXLTextEncoder2 = None
self.text_encoder_kolors: ChatGLMModel = None
self.unet: SDXLUNet = None
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
# self.controlnet: MultiControlNetManager = None (TODO)
self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None
self.ipadapter: SDXLIpAdapter = None
self.motion_modules: SDXLMotionModel = None
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
# Main models
self.text_encoder = model_manager.fetch_model("sdxl_text_encoder")
self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2")
self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder")
self.unet = model_manager.fetch_model("sdxl_unet")
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
self.prompter.fetch_models(self.text_encoder)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
# ControlNets (TODO)
# IP-Adapters
self.ipadapter = model_manager.fetch_model("sdxl_ipadapter")
self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder")
# Motion Modules
self.motion_modules = model_manager.fetch_model("sdxl_motion_modules")
if self.motion_modules is None:
self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear")
# Kolors
if self.text_encoder_kolors is not None:
print("Switch to Kolors. The prompter will be replaced.")
self.prompter = KolorsPrompter()
self.prompter.fetch_models(self.text_encoder_kolors)
# The schedulers of AniamteDiff and Kolors are incompatible. We align it with AniamteDiff.
if self.motion_modules is None:
self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100)
else:
self.prompter.fetch_models(self.text_encoder, self.text_encoder_2)
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
pipe = SDXLVideoPipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes)
return pipe
def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32):
images = [
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
for frame_id in range(latents.shape[0])
]
return images
def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
latents = []
for image in processed_images:
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
latents.append(latent.cpu())
latents = torch.concat(latents, dim=0)
return latents
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
num_frames=None,
input_frames=None,
ipadapter_images=None,
ipadapter_scale=1.0,
ipadapter_use_instant_style=False,
controlnet_frames=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
smoother=None,
smoother_progress_ids=[],
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Tiler parameters, batch size ...
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if self.motion_modules is None:
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
else:
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
if input_frames is None or denoising_strength == 1.0:
latents = noise
else:
latents = self.encode_video(input_frames, **tiler_kwargs)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
latents = latents.to(self.device) # will be deleted for supporting long videos
# Encode prompts
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True)
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False)
# IP-Adapter
if ipadapter_images is not None:
if ipadapter_use_instant_style:
self.ipadapter.set_less_adapter()
else:
self.ipadapter.set_full_adapter()
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
else:
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}
# Prepare ControlNets
if controlnet_frames is not None:
if isinstance(controlnet_frames[0], list):
controlnet_frames_ = []
for processor_id in range(len(controlnet_frames)):
controlnet_frames_.append(
torch.stack([
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
], dim=1)
)
controlnet_frames = torch.concat(controlnet_frames_, dim=0)
else:
controlnet_frames = torch.stack([
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames)
], dim=1)
controlnet_kwargs = {"controlnet_frames": controlnet_frames}
else:
controlnet_kwargs = {"controlnet_frames": None}
# Prepare extra input
extra_input = self.prepare_extra_input(latents)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance_xl(
self.unet, motion_modules=self.motion_modules, controlnet=None,
sample=latents, timestep=timestep,
**prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **extra_input, **tiler_kwargs,
device=self.device,
)
noise_pred_nega = lets_dance_xl(
self.unet, motion_modules=self.motion_modules, controlnet=None,
sample=latents, timestep=timestep,
**prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **extra_input, **tiler_kwargs,
device=self.device,
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM and smoother
if smoother is not None and progress_id in smoother_progress_ids:
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
rendered_frames = self.decode_video(rendered_frames)
rendered_frames = smoother(rendered_frames, original_frames=input_frames)
target_latents = self.encode_video(rendered_frames)
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
latents = self.scheduler.step(noise_pred, timestep, latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
output_frames = self.decode_video(latents, **tiler_kwargs)
# Post-process
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
output_frames = smoother(output_frames, original_frames=input_frames)
return output_frames