wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
8.27 kB
import lightning as pl
from peft import LoraConfig, inject_adapter_in_model
import torch, os
from ..data.simple_text_image import TextImageDataset
from modelscope.hub.api import HubApi
class LightningModelForT2ILoRA(pl.LightningModule):
def __init__(
self,
learning_rate=1e-4,
use_gradient_checkpointing=True,
):
super().__init__()
# Set parameters
self.learning_rate = learning_rate
self.use_gradient_checkpointing = use_gradient_checkpointing
def load_models(self):
# This function is implemented in other modules
self.pipe = None
def freeze_parameters(self):
# Freeze parameters
self.pipe.requires_grad_(False)
self.pipe.eval()
self.pipe.denoising_model().train()
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out"):
# Add LoRA to UNet
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=lora_target_modules.split(","),
)
model = inject_adapter_in_model(lora_config, model)
for param in model.parameters():
# Upcast LoRA parameters into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
def training_step(self, batch, batch_idx):
# Data
text, image = batch["text"], batch["image"]
# Prepare input parameters
self.pipe.device = self.device
prompt_emb = self.pipe.encode_prompt(text, positive=True)
latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device))
noise = torch.randn_like(latents)
timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,))
timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device)
extra_input = self.pipe.prepare_extra_input(latents)
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep)
training_target = self.pipe.scheduler.training_target(latents, noise, timestep)
# Compute loss
noise_pred = self.pipe.denoising_model()(
noisy_latents, timestep=timestep, **prompt_emb, **extra_input,
use_gradient_checkpointing=self.use_gradient_checkpointing
)
loss = torch.nn.functional.mse_loss(noise_pred, training_target)
# Record log
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters())
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
state_dict = self.pipe.denoising_model().state_dict()
for name, param in state_dict.items():
if name in trainable_param_names:
checkpoint[name] = param
def add_general_parsers(parser):
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--height",
type=int,
default=1024,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=1024,
help="Image width.",
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
default=False,
action="store_true",
help="Whether to randomly flip images horizontally",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--precision",
type=str,
default="16-mixed",
choices=["32", "16", "16-mixed"],
help="Training precision",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="The dimension of the LoRA update matrices.",
)
parser.add_argument(
"--lora_alpha",
type=float,
default=4.0,
help="The weight of the LoRA update matrices.",
)
parser.add_argument(
"--use_gradient_checkpointing",
default=False,
action="store_true",
help="Whether to use gradient checkpointing.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--training_strategy",
type=str,
default="auto",
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
help="Training strategy",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
parser.add_argument(
"--modelscope_model_id",
type=str,
default=None,
help="Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.",
)
parser.add_argument(
"--modelscope_access_token",
type=str,
default=None,
help="Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.",
)
return parser
def launch_training_task(model, args):
# dataset and data loader
dataset = TextImageDataset(
args.dataset_path,
steps_per_epoch=args.steps_per_epoch * args.batch_size,
height=args.height,
width=args.width,
center_crop=args.center_crop,
random_flip=args.random_flip
)
train_loader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers
)
# train
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
precision=args.precision,
strategy=args.training_strategy,
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
)
trainer.fit(model=model, train_dataloaders=train_loader)
# Upload models
if args.modelscope_model_id is not None and args.modelscope_access_token is not None:
print(f"Uploading models to modelscope. model_id: {args.modelscope_model_id} local_path: {trainer.log_dir}")
with open(os.path.join(trainer.log_dir, "configuration.json"), "w", encoding="utf-8") as f:
f.write('{"framework":"Pytorch","task":"text-to-image-synthesis"}\n')
api = HubApi()
api.login(args.modelscope_access_token)
api.push_model(model_id=args.modelscope_model_id, model_dir=trainer.log_dir)