Spaces:
Running
on
Zero
Running
on
Zero
import lightning as pl | |
from peft import LoraConfig, inject_adapter_in_model | |
import torch, os | |
from ..data.simple_text_image import TextImageDataset | |
from modelscope.hub.api import HubApi | |
class LightningModelForT2ILoRA(pl.LightningModule): | |
def __init__( | |
self, | |
learning_rate=1e-4, | |
use_gradient_checkpointing=True, | |
): | |
super().__init__() | |
# Set parameters | |
self.learning_rate = learning_rate | |
self.use_gradient_checkpointing = use_gradient_checkpointing | |
def load_models(self): | |
# This function is implemented in other modules | |
self.pipe = None | |
def freeze_parameters(self): | |
# Freeze parameters | |
self.pipe.requires_grad_(False) | |
self.pipe.eval() | |
self.pipe.denoising_model().train() | |
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out"): | |
# Add LoRA to UNet | |
lora_config = LoraConfig( | |
r=lora_rank, | |
lora_alpha=lora_alpha, | |
init_lora_weights="gaussian", | |
target_modules=lora_target_modules.split(","), | |
) | |
model = inject_adapter_in_model(lora_config, model) | |
for param in model.parameters(): | |
# Upcast LoRA parameters into fp32 | |
if param.requires_grad: | |
param.data = param.to(torch.float32) | |
def training_step(self, batch, batch_idx): | |
# Data | |
text, image = batch["text"], batch["image"] | |
# Prepare input parameters | |
self.pipe.device = self.device | |
prompt_emb = self.pipe.encode_prompt(text, positive=True) | |
latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device)) | |
noise = torch.randn_like(latents) | |
timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,)) | |
timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device) | |
extra_input = self.pipe.prepare_extra_input(latents) | |
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep) | |
training_target = self.pipe.scheduler.training_target(latents, noise, timestep) | |
# Compute loss | |
noise_pred = self.pipe.denoising_model()( | |
noisy_latents, timestep=timestep, **prompt_emb, **extra_input, | |
use_gradient_checkpointing=self.use_gradient_checkpointing | |
) | |
loss = torch.nn.functional.mse_loss(noise_pred, training_target) | |
# Record log | |
self.log("train_loss", loss, prog_bar=True) | |
return loss | |
def configure_optimizers(self): | |
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters()) | |
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate) | |
return optimizer | |
def on_save_checkpoint(self, checkpoint): | |
checkpoint.clear() | |
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters())) | |
trainable_param_names = set([named_param[0] for named_param in trainable_param_names]) | |
state_dict = self.pipe.denoising_model().state_dict() | |
for name, param in state_dict.items(): | |
if name in trainable_param_names: | |
checkpoint[name] = param | |
def add_general_parsers(parser): | |
parser.add_argument( | |
"--dataset_path", | |
type=str, | |
default=None, | |
required=True, | |
help="The path of the Dataset.", | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
default="./", | |
help="Path to save the model.", | |
) | |
parser.add_argument( | |
"--steps_per_epoch", | |
type=int, | |
default=500, | |
help="Number of steps per epoch.", | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=1024, | |
help="Image height.", | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=1024, | |
help="Image width.", | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--random_flip", | |
default=False, | |
action="store_true", | |
help="Whether to randomly flip images horizontally", | |
) | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
default=1, | |
help="Batch size (per device) for the training dataloader.", | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
default="16-mixed", | |
choices=["32", "16", "16-mixed"], | |
help="Training precision", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Learning rate.", | |
) | |
parser.add_argument( | |
"--lora_rank", | |
type=int, | |
default=4, | |
help="The dimension of the LoRA update matrices.", | |
) | |
parser.add_argument( | |
"--lora_alpha", | |
type=float, | |
default=4.0, | |
help="The weight of the LoRA update matrices.", | |
) | |
parser.add_argument( | |
"--use_gradient_checkpointing", | |
default=False, | |
action="store_true", | |
help="Whether to use gradient checkpointing.", | |
) | |
parser.add_argument( | |
"--accumulate_grad_batches", | |
type=int, | |
default=1, | |
help="The number of batches in gradient accumulation.", | |
) | |
parser.add_argument( | |
"--training_strategy", | |
type=str, | |
default="auto", | |
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"], | |
help="Training strategy", | |
) | |
parser.add_argument( | |
"--max_epochs", | |
type=int, | |
default=1, | |
help="Number of epochs.", | |
) | |
parser.add_argument( | |
"--modelscope_model_id", | |
type=str, | |
default=None, | |
help="Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.", | |
) | |
parser.add_argument( | |
"--modelscope_access_token", | |
type=str, | |
default=None, | |
help="Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.", | |
) | |
return parser | |
def launch_training_task(model, args): | |
# dataset and data loader | |
dataset = TextImageDataset( | |
args.dataset_path, | |
steps_per_epoch=args.steps_per_epoch * args.batch_size, | |
height=args.height, | |
width=args.width, | |
center_crop=args.center_crop, | |
random_flip=args.random_flip | |
) | |
train_loader = torch.utils.data.DataLoader( | |
dataset, | |
shuffle=True, | |
batch_size=args.batch_size, | |
num_workers=args.dataloader_num_workers | |
) | |
# train | |
trainer = pl.Trainer( | |
max_epochs=args.max_epochs, | |
accelerator="gpu", | |
devices="auto", | |
precision=args.precision, | |
strategy=args.training_strategy, | |
default_root_dir=args.output_path, | |
accumulate_grad_batches=args.accumulate_grad_batches, | |
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)] | |
) | |
trainer.fit(model=model, train_dataloaders=train_loader) | |
# Upload models | |
if args.modelscope_model_id is not None and args.modelscope_access_token is not None: | |
print(f"Uploading models to modelscope. model_id: {args.modelscope_model_id} local_path: {trainer.log_dir}") | |
with open(os.path.join(trainer.log_dir, "configuration.json"), "w", encoding="utf-8") as f: | |
f.write('{"framework":"Pytorch","task":"text-to-image-synthesis"}\n') | |
api = HubApi() | |
api.login(args.modelscope_access_token) | |
api.push_model(model_id=args.modelscope_model_id, model_dir=trainer.log_dir) | |