|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
pipe = pipeline("Summarization", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) |
|
|
|
|
|
response = "" |
|
for output in pipe( |
|
prompt, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
stream=True, |
|
): |
|
|
|
new_text = output[0]['generated_text'][len(response):] |
|
response = output[0]['generated_text'] |
|
yield new_text |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a friendly and helpful assistant.", |
|
label="System message" |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)" |
|
), |
|
], |
|
title="DeepSeek Chat Interface", |
|
description="Chat with the DeepSeek-R1-Distill-Qwen-1.5B model", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |