File size: 7,362 Bytes
f77db10
 
 
 
 
 
f8a0e7a
f77db10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4464f5c
 
 
f77db10
 
4464f5c
f77db10
 
 
 
 
 
 
 
 
4464f5c
c4bdf6c
 
f77db10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0181cdb
f77db10
 
c4bdf6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import os
import time
# from omegaconf import OmegaConf
import shutil
import os 
# import wget
import time 
variable = []
speech = ""
# context_2 = ""
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from transformers import AutoTokenizer, AutoModel
import logging
import torch
import os
import base64

from pyannote.audio import Pipeline
from transformers import pipeline, AutoModelForCausalLM
from diarization_utils import diarize
from huggingface_hub import HfApi
from pydantic import ValidationError
from starlette.exceptions import HTTPException

# from config import model_settings, InferenceConfig

import logging

from pydantic import BaseModel
from pydantic_settings import BaseSettings
from typing import Optional, Literal

logger = logging.getLogger(__name__)


class ModelSettings(BaseSettings):
    asr_model: str
    assistant_model: Optional[str]
    diarization_model: Optional[str]
    hf_token: Optional[str]


class InferenceConfig(BaseModel):
    task: Literal["transcribe", "translate"] = "transcribe"
    batch_size: int = 24
    assisted: bool = False
    chunk_length_s: int = 30
    sampling_rate: int = 16000
    language: Optional[str] = None
    num_speakers: Optional[int] = None
    min_speakers: Optional[int] = None
    max_speakers: Optional[int] = None

# from nemo.collections.asr.parts.utils.diarization_utils import OfflineDiarWithASR
# from nemo.collections.asr.parts.utils.decoder_timestamps_utils import ASRDecoderTimeStamps
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# logger.info(f"Using device: {device.type}")
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True,device_map='auto')
# base_model = "lyogavin/Anima-7B-100K"
# tokenizer = AutoTokenizer.from_pretrained(base_model)
# model = AutoModelForCausalLM.from_pretrained(
#         base_model,
#         bnb_4bit_compute_dtype=torch.float16,
#         # torch_dtype=torch.float16,
#         trust_remote_code=True,
#         device_map="auto",
#         load_in_4bit=True 
#         )
# model.eval()

assistant_model = AutoModelForCausalLM.from_pretrained(
    "distil-whisper/distil-large-v3",
    torch_dtype=torch_dtype,
    low_cpu_mem_usage=True,
    use_safetensors=True
) 

assistant_model.to(device)

asr_pipeline = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3",
    torch_dtype=torch_dtype,
    device=device
)


HfApi().whoami(os.getenv('HF_TOKEN'))
diarization_pipeline = Pipeline.from_pretrained(
    checkpoint_path="pyannote/speaker-diarization-3.1",
    use_auth_token=os.getenv('HF_TOKEN'),
)
diarization_pipeline.to(device)


def upload_file(files):
    file_paths = [file.name for file in files]
    
    global variable
    variable = file_paths

    return file_paths




def audio_function():
    # Call the function and return its result to be displayed

    time_1 = time.time()
    paths = variable

    str1 = "processed speech"
    for i in paths:
        str1 = str1 + i
    
    str1=str1.replace("processed speech","")
    print("before processing ffmpeg ! ")

    command_to_mp4_to_wav =   "ffmpeg -i {}    current_out.wav -y"
    #-acodec pcm_s16le -ar 16000 -ac 1
    os.system(command_to_mp4_to_wav.format(str1))

    print("after ffmpeg")

    # os.system("insanely-fast-whisper  --file-name {}_new.wav  --task transcribe --hf_token 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".format(str1.replace("mp3","")))

    parameters = InferenceConfig()
    

    generate_kwargs = {
        "task": parameters.task, 
        "language": parameters.language,
        "assistant_model": assistant_model if parameters.assisted else None
    }

    with open("current_out.wav", 'rb') as f:
        audio_encoded = base64.b64encode(f.read()).decode("utf-8")
    file = base64.b64decode(audio_encoded)
    
    asr_outputs = asr_pipeline(
        file,
        chunk_length_s=parameters.chunk_length_s,
        batch_size=parameters.batch_size,
        generate_kwargs=generate_kwargs,
        return_timestamps=True,
    )
    

    
        
    transcript = diarize(diarization_pipeline, file, parameters, asr_outputs)
    global speech
    speech  = transcript
    return transcript,asr_outputs["chunks"],asr_outputs["text"]
    
def audio_function2():
    # Call the function and return its result to be displayed
    
    # global speech
    str2 = speech
    time_3   = time.time()

    
    # prompt = " {}  generate medical subjective objective assessment plan (soap) notes ?".format(str2) 
    prompt = " {}  summary of sales call ? is the agent qualified the lead properly ?".format(str2) 
    
    # model = model.eval()
    response, history = model.chat(tokenizer, prompt, history=[])
    print(response)
    # del model
    # del tokenizer
    # torch.cuda.empty_cache()
    time_4 = time.time()
    # response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
    # print(response)

    # inputs = tokenizer(prompt, return_tensors="pt")

    # inputs['input_ids'] = inputs['input_ids'].cuda()
    # inputs['attention_mask'] = inputs['attention_mask'].cuda()

    
    # generate_ids = model.generate(**inputs, max_new_tokens=4096,
    #                     only_last_logit=True, # to save memory
    #                     use_cache=False, # when run into OOM, enable this can save memory
    #                     xentropy=True)
    # output = tokenizer.batch_decode(generate_ids, 
    #                             skip_special_tokens=True,
    #                             clean_up_tokenization_spaces=False) 

    # tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K")
    # model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", trust_remote_code=True, torch_dtype=torch.float16,device_map="auto",bnb_4bit_compute_dtype=torch.float16,load_in_4bit=True)


    # input_context = "summarize "+" the following {}".format(str2) 
    # input_ids = tokenizer.encode(input_context, return_tensors="pt").cuda()
    # output = model.generate(input_ids, max_new_tokens=512, temperature=0.7)
    # output_text = tokenizer.decode(output[0], skip_special_tokens=True)
    # print(output_text,"wow what happened ")
    # return output
    return response,str(int(time_4-time_3)) + " seconds"


with gr.Blocks() as demo:
    file_output = gr.File()
    upload_button = gr.UploadButton("Click to Upload a File", file_types=["audio","video"], file_count="multiple")
    upload_button.upload(upload_file, upload_button, file_output)
    gr.Markdown("## Click process audio to display text from audio file")
    submit_button = gr.Button("Process Audio")
    output_text = gr.Textbox(label="Speech Diarization")
    output_text_2 = gr.Textbox(label="Speech chunks")
    submit_button.click(audio_function, outputs=[output_text,output_text_2,gr.Textbox(label=" asr_text :")])
    gr.Markdown("## Click the Summarize to display call summary")
    submit_button = gr.Button("Summarize")
    output_text = gr.Textbox(label="Sales Call Notes")
    submit_button.click(audio_function2, outputs=[output_text,gr.Textbox(label="Time Taken :")])

demo.launch()