File size: 12,006 Bytes
f77db10
 
 
 
 
 
f8a0e7a
f77db10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import gradio as gr
import os
import time
# from omegaconf import OmegaConf
import shutil
import os 
# import wget
import time 
variable = []
speech = ""
# context_2 = ""
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from transformers import AutoTokenizer, AutoModel
import logging
import torch
import os
import base64

from pyannote.audio import Pipeline
from transformers import pipeline, AutoModelForCausalLM
from diarization_utils import diarize
from huggingface_hub import HfApi
from pydantic import ValidationError
from starlette.exceptions import HTTPException

# from config import model_settings, InferenceConfig

import logging

from pydantic import BaseModel
from pydantic_settings import BaseSettings
from typing import Optional, Literal

logger = logging.getLogger(__name__)


class ModelSettings(BaseSettings):
    asr_model: str
    assistant_model: Optional[str]
    diarization_model: Optional[str]
    hf_token: Optional[str]


class InferenceConfig(BaseModel):
    task: Literal["transcribe", "translate"] = "transcribe"
    batch_size: int = 24
    assisted: bool = False
    chunk_length_s: int = 30
    sampling_rate: int = 16000
    language: Optional[str] = None
    num_speakers: Optional[int] = None
    min_speakers: Optional[int] = None
    max_speakers: Optional[int] = None

# from nemo.collections.asr.parts.utils.diarization_utils import OfflineDiarWithASR
# from nemo.collections.asr.parts.utils.decoder_timestamps_utils import ASRDecoderTimeStamps
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# logger.info(f"Using device: {device.type}")
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True,device_map='auto')
# base_model = "lyogavin/Anima-7B-100K"
# tokenizer = AutoTokenizer.from_pretrained(base_model)
# model = AutoModelForCausalLM.from_pretrained(
#         base_model,
#         bnb_4bit_compute_dtype=torch.float16,
#         # torch_dtype=torch.float16,
#         trust_remote_code=True,
#         device_map="auto",
#         load_in_4bit=True 
#         )
# model.eval()

assistant_model = AutoModelForCausalLM.from_pretrained(
    "distil-whisper/distil-large-v3",
    torch_dtype=torch_dtype,
    low_cpu_mem_usage=True,
    use_safetensors=True
) 

assistant_model.to(device)

asr_pipeline = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3",
    torch_dtype=torch_dtype,
    device=device
)


HfApi().whoami(os.getenv('HF_TOKEN'))
diarization_pipeline = Pipeline.from_pretrained(
    checkpoint_path="pyannote/speaker-diarization-3.1",
    use_auth_token=os.getenv('HF_TOKEN'),
)
diarization_pipeline.to(device)


def upload_file(files):
    file_paths = [file.name for file in files]
    
    global variable
    variable = file_paths

    return file_paths




def audio_function():
    # Call the function and return its result to be displayed

    time_1 = time.time()
    paths = variable

    str1 = "processed speech"
    for i in paths:
        str1 = str1 + i
    
    str1=str1.replace("processed speech","")
    print("before processing ffmpeg ! ")

    command_to_mp4_to_wav =   "ffmpeg -i {}    current_out.wav -y"
    #-acodec pcm_s16le -ar 16000 -ac 1
    os.system(command_to_mp4_to_wav.format(str1))

    print("after ffmpeg")

    # os.system("insanely-fast-whisper  --file-name {}_new.wav  --task transcribe --hf_token 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".format(str1.replace("mp3","")))

    parameters = InferenceConfig()
    

    generate_kwargs = {
        "task": parameters.task, 
        "language": parameters.language,
        "assistant_model": assistant_model if parameters.assisted else None
    }

    
    asr_outputs = asr_pipeline(
        "current_out.wav",
        chunk_length_s=parameters.chunk_length_s,
        batch_size=parameters.batch_size,
        generate_kwargs=generate_kwargs,
        return_timestamps=True,
    )
    

    
        
    transcript = diarize(diarization_pipeline, "current_out.wav", parameters, asr_outputs)
    return transcript,asr_outputs["chunks"],asr_outputs["text"]
    return {
        "speakers": transcript,
        "chunks": asr_outputs["chunks"],
        "text": asr_outputs["text"],
    }
    a=time.time()
    DOMAIN_TYPE = "meeting" # Can be meeting or telephonic based on domain type of the audio file
    CONFIG_FILE_NAME = f"diar_infer_{DOMAIN_TYPE}.yaml"

    CONFIG_URL = f"https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/speaker_tasks/diarization/conf/inference/{CONFIG_FILE_NAME}"


    CONFIG = wget.download(CONFIG_URL,"./")
    cfg = OmegaConf.load(CONFIG)
    # print(OmegaConf.to_yaml(cfg))


    # Create a manifest file for input with below format. 
    # {"audio_filepath": "/path/to/audio_file", "offset": 0, "duration": null, "label": "infer", "text": "-", 
    # "num_speakers": null, "rttm_filepath": "/path/to/rttm/file", "uem_filepath"="/path/to/uem/filepath"}
    import json
    meta = {
        'audio_filepath': "current_out.wav", 
        'offset': 0, 
        'duration':None, 
        'label': 'infer', 
        'text': '-', 
        'num_speakers': None, 
        'rttm_filepath': None, 
        'uem_filepath' : None
    }
    with open(os.path.join('input_manifest.json'),'w') as fp:
        json.dump(meta,fp)
        fp.write('\n')

    cfg.diarizer.manifest_filepath = 'input_manifest.json'
    cfg.diarizer.out_dir = "./" # Directory to store intermediate files and prediction outputs
    pretrained_speaker_model = 'titanet_large'
    cfg.diarizer.speaker_embeddings.model_path = pretrained_speaker_model
    cfg.diarizer.speaker_embeddings.parameters.window_length_in_sec = [1.5,1.25,1.0,0.75,0.5] 
    cfg.diarizer.speaker_embeddings.parameters.shift_length_in_sec = [0.75,0.625,0.5,0.375,0.1] 
    cfg.diarizer.speaker_embeddings.parameters.multiscale_weights= [1,1,1,1,1] 
    cfg.diarizer.oracle_vad = True # ----> ORACLE VAD 
    cfg.diarizer.clustering.parameters.oracle_num_speakers = False
    # cfg.diarizer.manifest_filepath = 'input_manifest.json'
    # # !cat {cfg.diarizer.manifest_filepath}
    # pretrained_speaker_model='titanet_large'
    # cfg.diarizer.manifest_filepath = cfg.diarizer.manifest_filepath
    # cfg.diarizer.out_dir = "./" #Directory to store intermediate files and prediction outputs
    # cfg.diarizer.speaker_embeddings.model_path = pretrained_speaker_model
    # cfg.diarizer.clustering.parameters.oracle_num_speakers=False

    # Using Neural VAD and Conformer ASR 
    cfg.diarizer.vad.model_path = 'vad_multilingual_marblenet'
    cfg.diarizer.asr.model_path = 'stt_en_conformer_ctc_large'
    cfg.diarizer.oracle_vad = False # ----> Not using oracle VAD 
    cfg.diarizer.asr.parameters.asr_based_vad = False

    
    asr_decoder_ts = ASRDecoderTimeStamps(cfg.diarizer)
    asr_model = asr_decoder_ts.set_asr_model()
    print(asr_model)
    word_hyp, word_ts_hyp = asr_decoder_ts.run_ASR(asr_model)

    print("Decoded word output dictionary: \n", word_hyp)
    print("Word-level timestamps dictionary: \n", word_ts_hyp)

    
    asr_diar_offline = OfflineDiarWithASR(cfg.diarizer)
    asr_diar_offline.word_ts_anchor_offset = asr_decoder_ts.word_ts_anchor_offset

    diar_hyp, diar_score = asr_diar_offline.run_diarization(cfg, word_ts_hyp)
    print("Diarization hypothesis output: \n", diar_hyp)
    trans_info_dict = asr_diar_offline.get_transcript_with_speaker_labels(diar_hyp, word_hyp, word_ts_hyp)
    # print(trans_info_dict)

    # with open(os.path.join('output_diarization.json'),'w') as fp1:
        # json.dump(trans_info_dict,fp1)
        # fp1.write('\n')
    # b = time.time()
    # print(b-a,"seconds  diartization time for 50 min audio")


    import json 
    context  = ""
    context_2 = ""
    # global context_2
    # with open("output.json","r") as fli:
        # json_dict = json.load(fli)
    # for lst in sorted(json_dict["speakers"], key=lambda x: x['timestamp'][0], reverse=False):
        # context = context +  str(lst["timestamp"][0])+" : "+str(lst["timestamp"][1]) + " = " +  lst["text"]+"\n"
        # context = context +  str(lst["timestamp"][0])+" : "+str(lst["timestamp"][1]) + " = " + lst["speaker"]+" ; "+ lst["text"]+"\n"
    for dct in trans_info_dict["current_out"]["sentences"]:
        # context = context + "start_time : {} ".format(dct["start_time"]) + "end_time : {} ".format(dct["end_time"])+ "speaker : {} ".format(dct["speaker"]) + "\n"
        context = context +  str(dct["start_time"])+" : "+str(dct["end_time"]) + " = " + dct["speaker"]+" ; "+ dct["text"]+"\n"
        context_2 = context_2 +  str(dct["start_time"])+" : "+str(dct["end_time"]) + " = "+ dct["text"]+"\n"
    global speech
    speech = trans_info_dict["current_out"]["transcription"]

    time_2 = time.time()

    return context,context_2,str(int(time_2-time_1)) + " seconds"

def audio_function2():
    # Call the function and return its result to be displayed
    
    # global speech
    str2 = speech
    time_3   = time.time()

    
    # prompt = " {}  generate medical subjective objective assessment plan (soap) notes ?".format(str2) 
    prompt = " {}  summary of sales call ? is the agent qualified the lead properly ?".format(str2) 
    
    # model = model.eval()
    response, history = model.chat(tokenizer, prompt, history=[])
    print(response)
    # del model
    # del tokenizer
    # torch.cuda.empty_cache()
    time_4 = time.time()
    # response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
    # print(response)

    # inputs = tokenizer(prompt, return_tensors="pt")

    # inputs['input_ids'] = inputs['input_ids'].cuda()
    # inputs['attention_mask'] = inputs['attention_mask'].cuda()

    
    # generate_ids = model.generate(**inputs, max_new_tokens=4096,
    #                     only_last_logit=True, # to save memory
    #                     use_cache=False, # when run into OOM, enable this can save memory
    #                     xentropy=True)
    # output = tokenizer.batch_decode(generate_ids, 
    #                             skip_special_tokens=True,
    #                             clean_up_tokenization_spaces=False) 

    # tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K")
    # model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", trust_remote_code=True, torch_dtype=torch.float16,device_map="auto",bnb_4bit_compute_dtype=torch.float16,load_in_4bit=True)


    # input_context = "summarize "+" the following {}".format(str2) 
    # input_ids = tokenizer.encode(input_context, return_tensors="pt").cuda()
    # output = model.generate(input_ids, max_new_tokens=512, temperature=0.7)
    # output_text = tokenizer.decode(output[0], skip_special_tokens=True)
    # print(output_text,"wow what happened ")
    # return output
    return response,str(int(time_4-time_3)) + " seconds"


with gr.Blocks() as demo:
    file_output = gr.File()
    upload_button = gr.UploadButton("Click to Upload a File", file_types=["audio","video"], file_count="multiple")
    upload_button.upload(upload_file, upload_button, file_output)
    gr.Markdown("## Click process audio to display text from audio file")
    submit_button = gr.Button("Process Audio")
    output_text = gr.Textbox(label="Speech Diarization")
    output_text_2 = gr.Textbox(label="Speech chunks")
    submit_button.click(audio_function, outputs=[output_text,output_text_2,gr.Textbox(label=" asr_text :")])
    gr.Markdown("## Click the Summarize to display call summary")
    submit_button = gr.Button("Summarize")
    output_text = gr.Textbox(label="SOAP Notes")
    submit_button.click(audio_function2, outputs=[output_text,gr.Textbox(label="Time Taken :")])

demo.launch(server_name="0.0.0.0",auth = ('manish', 'openrainbow'),auth_message = "Enter your credentials")