Spaces:
Paused
Paused
import os | |
import json | |
import random | |
import torch | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline, DDIMScheduler | |
import gradio as gr | |
from gradio.components import Textbox, Image | |
repo_name = 'mohansathya/twosd' # YOUR REPO NAME | |
pipe2 = StableDiffusionPipeline.from_pretrained(repo_name, torch_dtype=torch.float16).to('cuda') | |
def generate_query_response(prompt): | |
negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, poorly drawn, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark" | |
num_samples = 5 | |
guidance_scale = 7.5 | |
num_inference_steps = 30 | |
height = 512 | |
width = 512 | |
seed = random.randint(0, 2147483647) | |
print("Seed: {}".format(str(seed))) | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
with autocast("cuda"), torch.inference_mode(): | |
imgs = pipe2( | |
prompt, | |
negative_prompt=negative_prompt, | |
height=height, width=width, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images | |
for img in imgs: | |
return img | |
# Input from user | |
in_prompt = Textbox(label="Enter a prompt:") | |
# Output response | |
out_response = Image(label="Generated image:") | |
# Gradio interface to generate UI link | |
iface = gr.Interface( | |
fn=generate_query_response, inputs=in_prompt, outputs=out_response) | |
# Launch the interface to generate UI | |
iface.launch() |