File size: 13,488 Bytes
e6e7a99 77b04d1 e6e7a99 77b04d1 8df831b 77b04d1 e6e7a99 8df831b d1e599e 8df831b 77b04d1 6131df7 77b04d1 6131df7 8df831b 6131df7 8df831b 77b04d1 e6e7a99 8df831b e6e7a99 6131df7 8df831b e6e7a99 77b04d1 6131df7 e6e7a99 f35f223 77b04d1 e6e7a99 8df831b e6e7a99 6131df7 e6e7a99 77b04d1 e6e7a99 77b04d1 e6e7a99 77b04d1 8df831b e6e7a99 6131df7 e6e7a99 77b04d1 e6e7a99 77b04d1 e6e7a99 77b04d1 e6e7a99 8df831b d1e599e e6e7a99 8df831b e6e7a99 d1e599e 8df831b e6e7a99 8df831b e6e7a99 77b04d1 d1e599e 77b04d1 e6e7a99 6131df7 77b04d1 e6e7a99 8df831b 6131df7 e6e7a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# --------------------------------libraries-----------------------------------
import streamlit as st
#import torch
import os
import logging
import sys
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms import LlamaCPP
from llama_index.embeddings import InstructorEmbedding
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from tqdm.notebook import tqdm
from dotenv import load_dotenv
from llama_index.llms import ChatMessage, MessageRole
from llama_index.prompts import ChatPromptTemplate
# --------------------------------env variables-----------------------------------
# Load environment variables
load_dotenv(dotenv_path=".env")
no_proxy = os.getenv("no_proxy")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
# Text QA Prompt
chat_text_qa_msgs = [
ChatMessage(
role=MessageRole.SYSTEM,
content=(
"You are Dolphin, a helpful AI assistant. "
"Answer questions based solely on the context provided. "
"Do not use information outside of the context. "
"Respond in the same language as the question. Be concise."
),
),
ChatMessage(
role=MessageRole.USER,
content=(
"Context information is below:\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Based on this context, answer the question: {query_str}\n"
),
),
]
text_qa_template = ChatPromptTemplate(chat_text_qa_msgs)
# Refine Prompt
chat_refine_msgs = [
ChatMessage(
role=MessageRole.SYSTEM,
content=(
"You are Dolphin, focused on refining answers with additional context. "
"Use new context to refine the answer. "
"If the new context isn't useful, restate the original answer. "
"Be precise and match the language of the query."
),
),
ChatMessage(
role=MessageRole.USER,
content=(
"New context for refinement:\n"
"------------\n"
"{context_msg}\n"
"------------\n"
"Refine the original answer with this context for the question: {query_str}. "
"Original Answer: {existing_answer}"
),
),
]
refine_template = ChatPromptTemplate(chat_refine_msgs)
template = (
"system\n"
"\"You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to, "
"including the specific context provided below. Do not provide information that is not contained in the documents or the context. "
"If a question is asked about content not in the documents or context, respond with 'I do not have that information.' "
"Always respond in the same language as the question was asked. Be concise.\n"
"Respond to the best of your ability. Try to respond in markdown.\"\n"
"If the user prompt is in French, YOU MUST ANSWER IN FRENCH. Otherwise, speak English\"\n"
"context\n"
"{context}\n"
"user\n"
"{prompt}\n"
"assistant\n"
)
# --------------------------------cache LLM-----------------------------------
# LLM
@st.cache_resource
def load_llm_model():
if not os.path.exists("models"):
os.makedirs("models")
return None #
llm = LlamaCPP(
#model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q5_K_M.gguf",
model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
temperature=0.0,
max_new_tokens=100,
context_window=4096,
generate_kwargs={},
model_kwargs={"n_gpu_layers": 20},
verbose=True,
)
return llm
llm = load_llm_model()
# --------------------------------cache Embedding model-----------------------------------
@st.cache_resource
def load_emb_model():
if not os.path.exists("data"):
os.makedirs("data")
return None #
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
#model_name="hkunlp/instructor-base"
)
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst,chunk_size=500,
llm=llm)
documents = SimpleDirectoryReader("data").load_data()
print(f"Number of documents: {len(documents)}")
index = VectorStoreIndex.from_documents(
documents, service_context=service_context, show_progress=True)
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
query_engine = load_emb_model()
# --------------------------------cache embd one doc-----------------------------------
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
@st.cache_resource
#One doc embedding
def load_emb_uploaded_document(filename):
# You may want to add a check to prevent execution during initialization.
if 'init' in st.session_state:
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm, chunk_size=500)
documents = SimpleDirectoryReader(input_files=[filename]).load_data()
index = VectorStoreIndex.from_documents(
documents, service_context=service_context, show_progress=True)
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
return None
# ------------------------------------session state----------------------------------------
if 'memory' not in st.session_state:
st.session_state.memory = ""
# # LLM Model Loading
# if 'llm_model' not in st.session_state:
# st.session_state.llm_model = load_llm_model()
# # Use the models from session state
# llm = st.session_state.llm_model
# # Embedding Model Loading
# if 'emb_model' not in st.session_state:
# st.session_state.emb_model = load_emb_model()
# # Use the models from session state
# query_engine = st.session_state.emb_model
# ------------------------------------layout----------------------------------------
with st.sidebar:
api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
st.title("🤖 Llama Index 📚")
if st.button('Clear Memory'):
del st.session_state["memory"]
st.session_state.memory = ""
st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
st.write("🚀 This app allows you to chat with local LLM using api server or loaded in cache")
st.subheader("💻 System Requirements: ")
st.markdown("- CPU: the faster the better ")
st.markdown("- RAM: 16 GB or higher")
st.markdown("- GPU: optional but very useful for Cuda acceleration")
st.subheader("Developer Information:")
st.write("This app is developed and maintained by **@mohcineelharras**")
# Define your app's tabs
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])
# -----------------------------------LLM only---------------------------------------------
with tab1:
st.title("💬 LLM only")
prompt = st.text_area(
"Ask your question here",
placeholder="How do miners contribute to the security of the blockchain ?",
)
if prompt:
contextual_prompt = st.session_state.memory + "\n" + prompt
response = llm.complete(prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
text_response = response
st.write("### Answer")
st.markdown(text_response)
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
with open("short_memory.txt", 'w') as file:
file.write(st.session_state.memory)
# -----------------------------------LLM Q&A-------------------------------------------------
with tab2:
st.title("💬 LLM RAG QA with database")
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/tree/main/data")
prompt = st.text_area(
"Ask your question here",
placeholder="Who is Mohcine ?",
)
if prompt:
contextual_prompt = st.session_state.memory + "\n" + prompt
response = query_engine.query(contextual_prompt)
text_response = response.response
st.write("### Answer")
st.markdown(text_response)
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
with st.expander("Document Similarity Search"):
for i, node in enumerate(response.source_nodes):
dict_source_i = node.node.metadata
dict_source_i.update({"Text":node.node.text})
st.write("Source n°"+str(i+1), dict_source_i)
break
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
with open("short_memory.txt", 'w') as file:
file.write(st.session_state.memory)
# -----------------------------------Upload File Q&A-----------------------------------------
with tab3:
st.title("📝 One single document Q&A with Llama Index using local open llms")
# if st.button('Reinitialize Query Engine', key='reinit_engine'):
# del query_engine_upload_doc
# st.write("Query engine reinitialized.")
uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
question = st.text_area(
"Ask something about the files",
placeholder="Can you give me a short summary?",
disabled=not uploaded_file,
)
if 'init' not in st.session_state:
st.session_state.init = True
if uploaded_file:
if not os.path.exists("draft_docs"):
os.makedirs("draft_docs")
with open("draft_docs/"+uploaded_file.name, "wb") as f:
text = uploaded_file.read()
f.write(text)
text = uploaded_file.read()
# Embedding Model Loading
query_engine_upload_doc = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
# if load_emb_uploaded_document:
# load_emb_uploaded_document.clear()
#load_emb_uploaded_document.clear()
st.write("File ",uploaded_file.name, "was loaded successfully")
else:
try:
del query_engine_upload_doc
except:
pass
if uploaded_file and question and api_server_info:
contextual_prompt = st.session_state.memory + "\n" + question
response = query_engine_upload_doc.query(contextual_prompt)
text_response = response.response
st.write("### Answer")
st.markdown(text_response)
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
with open("short_memory.txt", 'w') as file:
file.write(st.session_state.memory)
with st.expander("Document Similarity Search"):
#st.write(len(response.source_nodes))
for i, node in enumerate(response.source_nodes):
dict_source_i = node.node.metadata
dict_source_i.update({"Text":node.node.text})
st.write("Source n°"+str(i+1), dict_source_i)
#st.write("Source n°"+str(i))
#st.write("Meta Data :", node.node.metadata)
#st.write("Text :", node.node.text)
#st.write()
#print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)
st.subheader('⚠️ Warning: To avoid lags read carefully the steps below')
st.markdown("**ONE EXECUTION COULD TAKE UP TO 2 or 3 minutes because of hardware (0.9 token/second)**")
st.markdown("Please consider **delete input prompt** and **clear memory** with the button on sidebar, each time you switch to another tab")
st.markdown("If you've got a GPU locally, the execution could be a **lot faster** (approximately 5 seconds on my local machine).")
st.markdown("""
<div style="text-align: center; margin-top: 20px;">
<a href="https://github.com/mohcineelharras/llama-index-docs" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/Repository-333?logo=github&style=for-the-badge" alt="Repository" style="vertical-align: middle;">
</a>
<a href="https://www.linkedin.com/in/mohcine-el-harras" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/-LinkedIn-0077B5?style=for-the-badge&logo=linkedin" alt="LinkedIn" style="vertical-align: middle;">
</a>
<a href="https://mohcineelharras.github.io" target="_blank" style="margin: 10px; display: inline-block;">
<img src="https://img.shields.io/badge/Visit-Portfolio-9cf?style=for-the-badge" alt="GitHub" style="vertical-align: middle;">
</a>
</div>
<div style="text-align: center; margin-top: 20px; color: #666; font-size: 0.85em;">
© 2023 Mohcine EL HARRAS
</div>
""", unsafe_allow_html=True)
# -----------------------------------end----------------------------------------- |