File size: 13,316 Bytes
e6e7a99
 
 
 
 
 
 
 
 
 
 
 
 
77b04d1
 
e6e7a99
 
 
 
 
 
 
 
 
 
77b04d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e7a99
 
 
 
 
 
77b04d1
 
 
 
 
 
6131df7
77b04d1
 
 
 
 
 
6131df7
77b04d1
6131df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77b04d1
e6e7a99
 
 
 
 
 
 
 
 
 
 
 
6131df7
e6e7a99
 
 
 
 
 
6131df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e7a99
 
 
 
 
 
 
 
77b04d1
6131df7
e6e7a99
 
 
 
 
 
 
 
 
f35f223
 
77b04d1
 
 
e6e7a99
 
 
 
6131df7
e6e7a99
 
 
77b04d1
e6e7a99
77b04d1
 
e6e7a99
 
 
 
 
 
 
 
77b04d1
e6e7a99
 
6131df7
e6e7a99
 
77b04d1
 
 
 
 
 
e6e7a99
 
 
 
 
77b04d1
 
 
 
e6e7a99
 
77b04d1
e6e7a99
 
 
f35f223
 
 
e6e7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77b04d1
 
 
e6e7a99
6131df7
77b04d1
 
 
e6e7a99
 
 
 
 
 
 
 
 
 
 
 
6131df7
 
 
 
 
e6e7a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# --------------------------------libraries-----------------------------------

import streamlit as st
#import torch
import os
import logging
import sys
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms import LlamaCPP
from llama_index.embeddings import InstructorEmbedding
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from tqdm.notebook import tqdm
from dotenv import load_dotenv
from llama_index.llms import ChatMessage, MessageRole
from llama_index.prompts import ChatPromptTemplate

# --------------------------------env variables-----------------------------------

# Load environment variables
load_dotenv(dotenv_path=".env")

no_proxy = os.getenv("no_proxy")
OPENAI_API_KEY =  os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")

# Text QA Prompt
chat_text_qa_msgs = [
    ChatMessage(
        role=MessageRole.SYSTEM,
        content=(
            "You are Dolphin, a helpful AI assistant. "
            "Answer questions based solely on the context provided. "
            "Do not use information outside of the context. "
            "Respond in the same language as the question. Be concise."
        ),
    ),
    ChatMessage(
        role=MessageRole.USER,
        content=(
            "Context information is below:\n"
            "---------------------\n"
            "{context_str}\n"
            "---------------------\n"
            "Based on this context, answer the question: {query_str}\n"
        ),
    ),
]
text_qa_template = ChatPromptTemplate(chat_text_qa_msgs)

# Refine Prompt
chat_refine_msgs = [
    ChatMessage(
        role=MessageRole.SYSTEM,
        content=(
            "You are Dolphin, focused on refining answers with additional context. "
            "Use new context to refine the answer. "
            "If the new context isn't useful, restate the original answer. "
            "Be precise and match the language of the query."
        ),
    ),
    ChatMessage(
        role=MessageRole.USER,
        content=(
            "New context for refinement:\n"
            "------------\n"
            "{context_msg}\n"
            "------------\n"
            "Refine the original answer with this context for the question: {query_str}. "
            "Original Answer: {existing_answer}"
        ),
    ),
]

refine_template = ChatPromptTemplate(chat_refine_msgs)

template = (
    "system\n"
    "\"You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to, "
    "including the specific context provided below. Do not provide information that is not contained in the documents or the context. "
    "If a question is asked about content not in the documents or context, respond with 'I do not have that information.' "
    "Always respond in the same language as the question was asked. Be concise.\n"
    "Respond to the best of your ability. Try to respond in markdown.\"\n"
    "context\n"
    "{context}\n"
    "user\n"
    "{prompt}\n"
    "assistant\n"
)


# --------------------------------cache LLM-----------------------------------

logging.basicConfig(stream=sys.stdout, level=logging.INFO)  
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])

#One doc embedding
def load_emb_uploaded_document(filename):
    # You may want to add a check to prevent execution during initialization.
    if 'init' in st.session_state:
        embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
        service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm, chunk_size=500)
        documents = SimpleDirectoryReader(input_files=[filename]).load_data()
        index = VectorStoreIndex.from_documents(
            documents, service_context=service_context, show_progress=True)
        return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
    return None

# --------------------------------cache Embedding model-----------------------------------

@st.cache_resource
def load_emb_model():
    if not os.path.exists("data"):
        st.error("Data directory does not exist. Please upload the data.")
        os.makedirs("data")
        return None  # 
    embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
        #model_name="hkunlp/instructor-base"
        )
    service_context = ServiceContext.from_defaults(embed_model=embed_model_inst,chunk_size=500,
                                                   llm=llm)
    documents = SimpleDirectoryReader("data").load_data()
    print(f"Number of documents: {len(documents)}")
    index = VectorStoreIndex.from_documents(
        documents, service_context=service_context, show_progress=True)
    return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)

# --------------------------------cache Embedding model-----------------------------------

# LLM
@st.cache_resource
def load_llm_model():
    if not os.path.exists("models"):
        st.error("models directory does not exist. Please download and copy paste a model in folder models.")
        os.makedirs("models")
        return None  # 
    llm = LlamaCPP(
        #model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q5_K_M.gguf",
        model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
        temperature=0.0,
        max_new_tokens=100,
        context_window=4096,  
        generate_kwargs={},
        model_kwargs={"n_gpu_layers": 20}, 
        verbose=True,
    )
    return llm

# ------------------------------------session state----------------------------------------

if 'memory' not in st.session_state:
    st.session_state.memory = ""
    
# LLM Model Loading
if 'llm_model' not in st.session_state:
    st.session_state.llm_model = load_llm_model()
# Use the models from session state
llm = st.session_state.llm_model

# Embedding Model Loading
if 'emb_model' not in st.session_state:
    st.session_state.emb_model = load_emb_model()
# Use the models from session state
query_engine = st.session_state.emb_model


# ------------------------------------layout----------------------------------------

with st.sidebar:
    api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
    st.title("🤖 Llama Index 📚")
    if st.button('Clear Memory'):
        del st.session_state["memory"]
        st.session_state.memory = ""
    st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
    st.write("🚀 This app allows you to chat with local LLM using api server or loaded in cache")
    st.subheader("💻 System Requirements: ")
    st.markdown("- CPU: the faster the better ")
    st.markdown("- RAM: 16 GB or higher")
    st.markdown("- GPU: optional but very useful for Cuda acceleration")
    st.subheader("Developer Information:")
    st.write("This app is developed and maintained by **@mohcineelharras**")

# Define your app's tabs
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])

# -----------------------------------LLM only--------------------------------------------- 

with tab1:
    st.title("💬 LLM only")
    prompt = st.text_input(
        "Ask your question here",
        placeholder="How do miners contribute to the security of the blockchain ?",
    )
    if prompt:
        contextual_prompt = st.session_state.memory + "\n" + prompt
        response = llm.complete(prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
        text_response = response
        st.write("### Answer")
        st.markdown(text_response)
        st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
        with open("short_memory.txt", 'w') as file:
            file.write(st.session_state.memory)

# -----------------------------------LLM Q&A-------------------------------------------------    

with tab2:
    st.title("💬 LLM RAG QA with database")
    st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/tree/main/data")
    prompt = st.text_input(
        "Ask your question here",
        placeholder="Who is Mohcine ?",
    )
    if prompt:
        contextual_prompt = st.session_state.memory + "\n" + prompt
        response = query_engine.query(contextual_prompt)
        text_response = response.response
        st.write("### Answer")
        st.markdown(text_response)
        st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
        with st.expander("Document Similarity Search"):
            for i, node in enumerate(response.source_nodes):
                dict_source_i = node.node.metadata
                dict_source_i.update({"Text":node.node.text})
                st.write("Source n°"+str(i+1), dict_source_i)
                break
        st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
        with open("short_memory.txt", 'w') as file:
            file.write(st.session_state.memory)


# -----------------------------------Upload File Q&A-----------------------------------------

with tab3:
    st.title("📝 One single document Q&A with Llama Index using local open llms")
    if st.button('Reinitialize Query Engine', key='reinit_engine'):
        query_engine = st.session_state.emb_model
        st.write("Query engine reinitialized.")
    uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
    question = st.text_input(
        "Ask something about the files",
        placeholder="Can you give me a short summary?",
        disabled=not uploaded_file,
    )

    if 'init' not in st.session_state:
        st.session_state.init = True

    if uploaded_file:
        if not os.path.exists("draft_docs"):
            st.error("draft_docs directory does not exist. Please download and copy paste a model in folder models.")
            os.makedirs("draft_docs")

        with open("draft_docs/"+uploaded_file.name, "wb") as f:
            text = uploaded_file.read()
            f.write(text)
        text = uploaded_file.read()
        # if load_emb_uploaded_document:
        #     load_emb_uploaded_document.clear()
        #load_emb_uploaded_document.clear()
        query_engine = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
        st.write("File ",uploaded_file.name, "was loaded successfully")

    if uploaded_file and question and api_server_info:
        contextual_prompt = st.session_state.memory + "\n" + question
        response = query_engine.query(contextual_prompt)
        text_response = response.response
        st.write("### Answer")
        st.markdown(text_response)
        st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
        with open("short_memory.txt", 'w') as file:
            file.write(st.session_state.memory)
        with st.expander("Document Similarity Search"):
            #st.write(len(response.source_nodes))
            for i, node in enumerate(response.source_nodes):
                dict_source_i = node.node.metadata
                dict_source_i.update({"Text":node.node.text})
                st.write("Source n°"+str(i+1), dict_source_i)
                #st.write("Source n°"+str(i))
                #st.write("Meta Data :", node.node.metadata)
                #st.write("Text :", node.node.text)
                #st.write()
    #print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)

st.subheader('⚠️ Warning: To avoid lags')
st.markdown("Please consider **delete input prompt** and **clear memory** with the button on sidebar, each time you switch to another tab")
st.markdown("If you've got a GPU locally, the execution could be a **lot faster** (approximately 5 seconds on my local machine).")


st.markdown("""
<div style="text-align: center; margin-top: 20px;">
    <a href="https://github.com/mohcineelharras/llama-index-docs" target="_blank" style="margin: 10px; display: inline-block;">
        <img src="https://img.shields.io/badge/Repository-333?logo=github&style=for-the-badge" alt="Repository" style="vertical-align: middle;">
    </a>
    <a href="https://www.linkedin.com/in/mohcine-el-harras" target="_blank" style="margin: 10px; display: inline-block;">
        <img src="https://img.shields.io/badge/-LinkedIn-0077B5?style=for-the-badge&logo=linkedin" alt="LinkedIn" style="vertical-align: middle;">
    </a>
    <a href="https://mohcineelharras.github.io" target="_blank" style="margin: 10px; display: inline-block;">
        <img src="https://img.shields.io/badge/Visit-Portfolio-9cf?style=for-the-badge" alt="GitHub" style="vertical-align: middle;">
    </a>
</div>
<div style="text-align: center; margin-top: 20px; color: #666; font-size: 0.85em;">
    © 2023 Mohcine EL HARRAS
</div>
""", unsafe_allow_html=True)


# -----------------------------------end-----------------------------------------