molinari135 commited on
Commit
e414a63
·
verified ·
1 Parent(s): a97c2f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -10,7 +10,7 @@ API_URL = "https://molinari135-product-return-prediction-api.hf.space/predict/"
10
  # Load the inventory dataset from Hugging Face
11
  hf_token = os.getenv("inventory_data")
12
  dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
13
- inventory = pd.DataFrame(dataset['train']).head(20)
14
 
15
  # Gradio Interface function
16
  def predict_return(selected_products, total_customer_purchases, total_customer_returns):
@@ -47,6 +47,8 @@ def predict_return(selected_products, total_customer_purchases, total_customer_r
47
  # Add description to the cart
48
  description = (
49
  f"Model: {model}, Fabric: {fabric}, Colour: {color}, "
 
 
50
  f"Sales Value: {product_value} USD"
51
  )
52
  descriptions.append(description)
@@ -90,9 +92,8 @@ interface = gr.Interface(
90
  fn=predict_return, # Funzione per la logica di predizione
91
  inputs=[
92
  gr.CheckboxGroup(
93
- choices=[
94
- f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']} \nProduct type: {row['Product Type']} Product subtype: {row['Product Subtype']} Price: {row['Net Sales (FA)']}"
95
- for _, row in inventory.iterrows()],
96
  label="Select Products"
97
  ),
98
  gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
 
10
  # Load the inventory dataset from Hugging Face
11
  hf_token = os.getenv("inventory_data")
12
  dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
13
+ inventory = pd.DataFrame(dataset['train']).head(50)
14
 
15
  # Gradio Interface function
16
  def predict_return(selected_products, total_customer_purchases, total_customer_returns):
 
47
  # Add description to the cart
48
  description = (
49
  f"Model: {model}, Fabric: {fabric}, Colour: {color}, "
50
+ f"Product Type: {product_details['Product Type'].values[0]}, "
51
+ f"Material: {product_details['Main Material'].values[0]}, "
52
  f"Sales Value: {product_value} USD"
53
  )
54
  descriptions.append(description)
 
92
  fn=predict_return, # Funzione per la logica di predizione
93
  inputs=[
94
  gr.CheckboxGroup(
95
+ choices=[f"{row['Item Brand Model']}-{row['Item Brand Fabric']}-{row['Item Brand Colour']}"
96
+ for _, row in inventory.iterrows()],
 
97
  label="Select Products"
98
  ),
99
  gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),