image_caption / app.py
mookkanvas's picture
Create app.py
b913cef
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import requests
from io import BytesIO
model_name = "nlpconnect/vit-gpt2-image-captioning"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate_caption(image):
image = image.convert("RGB")
image = image.resize((224, 224))
inputs = tokenizer("Image caption: ", return_tensors="pt", max_length=30, truncation=True)
with st.spinner("Generating caption..."):
caption_ids = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
generated_caption = tokenizer.decode(caption_ids[0], skip_special_tokens=True)
return generated_caption
def main():
st.title("Image Captioning App")
with st.form("my_form"):
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
clicked = st.form_submit_button("Generate Caption")
if clicked and uploaded_file is not None:
caption = generate_caption(image)
st.success("Generated Caption:")
st.write(caption)
if __name__ == "__main__":
main()