Spaces:
Build error
Build error
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
model_name = "nlpconnect/vit-gpt2-image-captioning" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def generate_caption(image): | |
image = image.convert("RGB") | |
image = image.resize((224, 224)) | |
inputs = tokenizer("Image caption: ", return_tensors="pt", max_length=30, truncation=True) | |
with st.spinner("Generating caption..."): | |
caption_ids = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) | |
generated_caption = tokenizer.decode(caption_ids[0], skip_special_tokens=True) | |
return generated_caption | |
def main(): | |
st.title("Image Captioning App") | |
with st.form("my_form"): | |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
clicked = st.form_submit_button("Generate Caption") | |
if clicked and uploaded_file is not None: | |
caption = generate_caption(image) | |
st.success("Generated Caption:") | |
st.write(caption) | |
if __name__ == "__main__": | |
main() | |