Spaces:
Sleeping
Sleeping
# libraries for data preprocessing | |
import numpy as np | |
import pandas as pd | |
import pickle | |
import gradio as gr | |
## lets load the model | |
with open('loan-model.bin', 'rb') as f_in: | |
dv, model = pickle.load(f_in) | |
# Example function to preprocess the input | |
def applicant_data(gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area): | |
# Create a dictionary of the input features | |
input_data = { | |
'Gender': gender, | |
'Married': married, | |
'Dependents': dependents, | |
'Education': education, | |
'Self_Employed': self_employed, | |
'ApplicantIncome': applicantincome, | |
'CoapplicantIncome': coapplicantincome, | |
'LoanAmount': loanamount, | |
'Loan_Amount_Term': loan_amount_term, | |
'Credit_History': credit_history, | |
'Property_Area': property_area | |
} | |
# Transform the input data using the pre-fitted transformer (e.g., DictVectorizer, OneHotEncoder) | |
X = dv.transform([input_data]) | |
return X | |
# Function to make predictions | |
def predict_loan_status(gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area): | |
# Preprocess the input data | |
input_data = applicant_data(gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area) | |
# Predict using the model | |
prediction = model.predict_proba(input_data)[:,1] | |
# Post-process the prediction if needed | |
# Assuming the model output is a single prediction value | |
predicted_value = prediction[0] | |
print(predicted_value) | |
# Return verdict based on threshold | |
if predicted_value >= 0.3: | |
return f'Verdict: Good standing - Approved ({predicted_value:.2f})' | |
else: | |
return f'Verdict: Bad standing - Rejected ({predicted_value:.2f})' | |
# Gradio interface | |
# Gradio interface with improved input handling | |
inputs = [ | |
gr.Dropdown(choices=["Male", "Female"], label="Gender"), | |
gr.Dropdown(choices=["Yes", "No"], label="Married"), | |
gr.Number(label="Dependents", value=0), | |
gr.Dropdown(choices=["Graduate", "Not Graduate"], label="Education"), | |
gr.Dropdown(choices=["Yes", "No"], label="Self Employed"), | |
gr.Number(label="Applicant Income", value=0), | |
gr.Number(label="Coapplicant Income", value=0), | |
gr.Number(label="Loan Amount", value=0), | |
gr.Number(label="Loan Amount Term", value=360), | |
gr.Dropdown(choices=[0, 1], label="Credit History"), | |
gr.Dropdown(choices=["Urban", "Semiurban", "Rural"], label="Property Area") | |
] | |
output_text = gr.Textbox(label="Loan Prediction") | |
# Create the Gradio interface | |
gr.Interface(fn=predict_loan_status, inputs=inputs, outputs=output_text, title="Loan Status Prediction").launch(share=True) |