File size: 5,648 Bytes
b4a3bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import whisperx
import torch
import numpy as np
from scipy.signal import resample
import numpy as np
import whisperx
from pyannote.audio import Pipeline
import os
from dotenv import load_dotenv

load_dotenv()

hf_token = os.getenv("HF_TOKEN")
import whisperx
import torch
import numpy as np

import whisperx
import torch
import numpy as np

import whisperx
import torch
import numpy as np
CHUNK_LENGTH=5

# def process_audio(audio_file):
#     device = "cuda" if torch.cuda.is_available() else "cpu"
#     compute_type = "float32"
#     audio = whisperx.load_audio(audio_file)
#     model = whisperx.load_model("small", device, compute_type=compute_type)

#     # Initial transcription
#     result = model.transcribe(audio, batch_size=8)

#     # Sliding window for language detection
#     window_size = 5  # seconds
#     step_size = 1  # seconds
#     sample_rate = 16000

#     language_probs = []
#     audio_duration = len(audio) / sample_rate

#     if audio_duration <= window_size:
#         # If audio is shorter than or equal to window size, detect language for entire audio
#         lang = model.detect_language(audio)
#         language_probs.append((0, lang))
#     else:
#         for i in range(0, len(audio) - window_size * sample_rate + 1, step_size * sample_rate):
#             window = audio[i:i + window_size * sample_rate]
#             lang = model.detect_language(window)
#             language_probs.append((i / sample_rate, lang))

#     # Detect language changes
#     language_segments = []
#     current_lang = language_probs[0][1]
#     start_time = 0
#     for time, lang in language_probs[1:]:
#         if lang != current_lang:
#             language_segments.append({
#                 "language": current_lang,
#                 "start": start_time,
#                 "end": time
#             })
#             current_lang = lang
#             start_time = time

#     # Add the last segment
#     language_segments.append({
#         "language": current_lang,
#         "start": start_time,
#         "end": audio_duration
#     })

#     # Re-transcribe each language segment
#     final_segments = []
#     for segment in language_segments:
#         start_sample = int(segment["start"] * sample_rate)
#         end_sample = int(segment["end"] * sample_rate)
#         segment_audio = audio[start_sample:end_sample]
        
#         segment_result = model.transcribe(segment_audio, language=segment["language"])
        
#         for seg in segment_result["segments"]:
#             seg["start"] += segment["start"]
#             seg["end"] += segment["start"]
#             seg["language"] = segment["language"]
#             final_segments.append(seg)

#     return language_segments, final_segments

import whisperx
import torch
import numpy as np

def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000):  # 30 seconds at 16kHz
    chunks = []
    for i in range(0, len(audio), chunk_size):
        chunk = audio[i:i+chunk_size]
        if len(chunk) < chunk_size:
            chunk = np.pad(chunk, (0, chunk_size - len(chunk)))
        chunks.append(chunk)
    return chunks

def process_audio(audio_file):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    compute_type = "float32"
    audio = whisperx.load_audio(audio_file)
    model = whisperx.load_model("small", device, compute_type=compute_type)

    # Initialize speaker diarization pipeline
    diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
    diarization_pipeline = diarization_pipeline.to(torch.device(device))

    # Perform diarization on the entire audio
    diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})


    # Preprocess audio into consistent chunks
    chunks = preprocess_audio(audio)

    language_segments = []
    final_segments = []
    
    for i, chunk in enumerate(chunks):
        # Detect language for this chunk
        lang = model.detect_language(chunk)
        
        # Transcribe this chunk
        result = model.transcribe(chunk, language=lang)
        
        chunk_start_time = i * 5  # Each chunk is 30 seconds
        
        # Adjust timestamps and add language information
        for segment in result["segments"]:
            segment_start = chunk_start_time + segment["start"]
            segment_end = chunk_start_time + segment["end"]
            segment["start"] = segment_start
            segment["end"] = segment_end
            segment["language"] = lang
            
            speakers = []
            for turn, track, speaker in diarization_result.itertracks(yield_label=True):
                if turn.start <= segment_end and turn.end >= segment_start:
                    speakers.append(speaker)
            if speakers:
                segment["speaker"] = max(set(speakers), key=speakers.count)
            else:
                segment["speaker"] = "Unknown"

            final_segments.append(segment)
        # Add language segment
        language_segments.append({
            "language": lang,
            "start": chunk_start_time,
            "end": chunk_start_time + 5
        })

    return language_segments, final_segments

def print_results(language, language_probs, segments):
    print(f"Detected Language: {language}")
    print("Language Probabilities:")
    for lang, prob in language_probs.items():
        print(f"  {lang}: {prob:.4f}")
    
    print("\nTranscription:")
    for segment in segments:
        print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] Speaker {segment['speaker']}: {segment['text']}")