File size: 20,100 Bytes
9c4a097
 
 
 
 
 
 
 
51c7afb
 
 
f9d1bd8
9c4a097
51c7afb
 
9c4a097
fcd2920
9c4a097
51c7afb
 
 
9c4a097
 
 
 
0394b1d
9c4a097
 
 
 
 
0394b1d
9c4a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dacbc2
 
12c861a
6dacbc2
 
 
 
 
 
 
 
 
 
f141e3f
 
 
6dacbc2
9c4a097
 
9e9de3d
9c4a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6419d1f
12c861a
 
 
450e4a9
 
 
 
1cdf0ba
9c4a097
6419d1f
9c4a097
 
4b5b051
 
 
6dacbc2
4b5b051
 
9c4a097
13a09ca
12c861a
 
 
 
9c4a097
 
6419d1f
9c4a097
 
 
0cf95f2
9c4a097
6dacbc2
 
 
 
9c4a097
6dacbc2
9a5e9c3
0cf95f2
60711cf
6dacbc2
12c861a
9a5e9c3
6dacbc2
9c4a097
2a17ed0
4b5b051
 
 
6dacbc2
4b5b051
 
9c4a097
13a09ca
12c861a
 
 
 
9c4a097
 
6419d1f
f9d1bd8
9c4a097
bf52482
06ab2d0
bf52482
 
 
 
 
 
 
 
4b5b051
bf52482
4b5b051
 
bf52482
4b5b051
 
bf52482
 
 
 
 
 
 
4b5b051
bf52482
4b5b051
 
bf52482
4b5b051
 
9c4a097
bf52482
 
13a09ca
12c861a
 
 
 
9c4a097
 
6419d1f
9c4a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a5e9c3
9c4a097
 
 
12c861a
9a5e9c3
9c4a097
 
4b5b051
 
 
9c4a097
4b5b051
 
9c4a097
 
 
13a09ca
12c861a
 
 
 
9c4a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6419d1f
9c4a097
 
 
 
 
 
 
 
 
 
f9d1bd8
9c4a097
 
f9d1bd8
9c4a097
 
 
 
 
9a5e9c3
9c4a097
 
 
12c861a
9a5e9c3
9c4a097
 
4b5b051
 
 
9c4a097
4b5b051
 
9c4a097
 
 
13a09ca
12c861a
 
 
 
9c4a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860d770
9c4a097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3a8f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import os
import csv
import json
import docx
import pptx
import re
import nltk
import time
import PyPDF2
import tempfile
import openpyxl
import requests
import gradio as gr
from bs4 import BeautifulSoup
import xml.etree.ElementTree as ET
from nltk.tokenize import word_tokenize
from langchain_community.vectorstores import FAISS
from youtube_transcript_api import YouTubeTranscriptApi
from langchain.schema import SystemMessage, HumanMessage, AIMessage
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_community.embeddings import SentenceTransformerEmbeddings
from youtube_transcript_api._errors import NoTranscriptFound, TranscriptsDisabled, VideoUnavailable
nltk.download('punkt')
nltk.download('omw-1.4')
nltk.download('wordnet')

def read_csv(file_path):
    with open(file_path, 'r', encoding='utf-8', errors='ignore', newline='') as csvfile:
        csv_reader = csv.reader(csvfile)
        csv_data = [row for row in csv_reader]
    return ' '.join([' '.join(row) for row in csv_data])

def read_text(file_path):
    with open(file_path, 'r', encoding='utf-8', errors='ignore',  newline='') as f:
        return f.read()

def read_pdf(file_path):
    text_data = []
    with open(file_path, 'rb') as pdf_file:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        for page in pdf_reader.pages:
            text_data.append(page.extract_text())
    return '\n'.join(text_data)

def read_docx(file_path):
    doc = docx.Document(file_path)
    return '\n'.join([paragraph.text for paragraph in doc.paragraphs])

def read_pptx(file_path):
    ppt = pptx.Presentation(file_path)
    text_data = ''
    for slide in ppt.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text_data += shape.text + '\n'
    return text_data

def read_xlsx(file_path):
    workbook = openpyxl.load_workbook(file_path)
    sheet = workbook.active
    text_data = ''
    for row in sheet.iter_rows(values_only=True):
        text_data += ' '.join([str(cell) for cell in row if cell is not None]) + '\n'
    return text_data

def read_json(file_path):
    with open(file_path, 'r') as f:
        json_data = json.load(f)
    return json.dumps(json_data)

def read_html(file_path):
    with open(file_path, 'r') as f:
        html_content = f.read()
    soup = BeautifulSoup(html_content, 'html.parser')
    return soup

def read_xml(file_path):
    tree = ET.parse(file_path)
    root = tree.getroot()
    return ET.tostring(root, encoding='unicode')

def process_youtube_video(url, languages=['en', 'ar']):
    if 'youtube.com/watch' in url or 'youtu.be/' in url:
        try:
            if "v=" in url:
                video_id = url.split("v=")[1].split("&")[0]
            elif "youtu.be/" in url:
                video_id = url.split("youtu.be/")[1].split("?")[0]
            else:
                return "Invalid YouTube video URL. Please provide a valid YouTube video link."

            response = requests.get(f"http://img.youtube.com/vi/{video_id}/mqdefault.jpg")
            if response.status_code != 200:
                return "Video doesn't exist."

            transcript_data = []
            for lang in languages:
                try:
                    transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=[lang])
                    transcript_data.append(' '.join([entry['text'] for entry in transcript]))
                except (NoTranscriptFound, TranscriptsDisabled, VideoUnavailable):
                    continue

            return ' '.join(transcript_data) if transcript_data else "Please choose a YouTube video with available English or Arabic transcripts."

        except Exception as e:
            return f"An error occurred: {e}"
    else:
        return "Invalid YouTube URL. Please provide a valid YouTube link."

def read_web_page(url):
    result = requests.get(url)
    if result.status_code == 200:
        src = result.content
        soup = BeautifulSoup(src, 'html.parser')
        text_data = ''
        for p in soup.find_all('p'):
            text_data += p.get_text() + '\n'
        return text_data
    else:
        return "Please provide a valid webpage link"

def read_data(file_path_or_url, languages=['en', 'ar']):
    if file_path_or_url.endswith('.csv'):
        return read_csv(file_path_or_url)
    elif file_path_or_url.endswith('.txt'):
        return read_text(file_path_or_url)
    elif file_path_or_url.endswith('.pdf'):
        return read_pdf(file_path_or_url)
    elif file_path_or_url.endswith('.docx'):
        return read_docx(file_path_or_url)
    elif file_path_or_url.endswith('.pptx'):
        return read_pptx(file_path_or_url)
    elif file_path_or_url.endswith('.xlsx'):
        return read_xlsx(file_path_or_url)
    elif file_path_or_url.endswith('.json'):
        return read_json(file_path_or_url)
    elif file_path_or_url.endswith('.html'):
        return read_html(file_path_or_url)
    elif file_path_or_url.endswith('.xml'):
        return read_xml(file_path_or_url)
    elif 'youtube.com/watch' in file_path_or_url or 'youtu.be/' in file_path_or_url:
        return process_youtube_video(file_path_or_url, languages)
    elif file_path_or_url.startswith('http'):
        return read_web_page(file_path_or_url)
    else:
        return "Unsupported type or format."

def normalize_text(text):
    text = re.sub("\*?", "", text)
    text = text.lower()
    text = text.strip()
    punctuation = '''!()[]{};:'"\<>/?$%^&*_`~='''
    for punc in punctuation:
        text = text.replace(punc, "")
    text = re.sub(r'[A-Za-z0-9]*@[A-Za-z]*\.?[A-Za-z0-9]*', "", text)
    words = word_tokenize(text)
    return ' '.join(words)

llm = HuggingFaceEndpoint(
    repo_id="HuggingFaceH4/starchat2-15b-v0.1",
    task="text-generation",
    max_new_tokens=4096,
    temperature=0.6,
    top_p=0.9,
    top_k=40,
    repetition_penalty=1.2,
    do_sample=True,
)
chat_model = ChatHuggingFace(llm=llm)

model_name = "sentence-transformers/all-mpnet-base-v2"
embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def user(user_message, history):
  if not len(user_message):
    raise gr.Error("Chat messages cannot be empty")
  return "", history + [[user_message, None]]

def user2(user_message, history, link):
    if not len(user_message) or not len(link):
        raise gr.Error("Chat messages or links cannot be empty")
    combined_message = f"{link}\n{user_message}"
    return "", history + [[combined_message, None]], link

def user3(user_message, history, file_path):
    if not len(user_message) or not file_path:
        raise gr.Error("Chat messages or flies cannot be empty")
    combined_message = f"{file_path}\n{user_message}"
    return "", history + [[combined_message, None]], file_path

messages1 = [
  SystemMessage(content="You are a helpful assistant."),
  HumanMessage(content="Hi AI, how are you today?"),
AIMessage(content="I'm great thank you. How can I help you?")]
messages2 = messages1.copy()
messages3 = messages1.copy()
messages4 = messages1.copy()
messages5 = messages1.copy()
    
def Chat_Message(history):
    global messages1

    message=HumanMessage(content=history[-1][0])
    messages1.append(message)
    response = chat_model.invoke(messages1)
    messages1.append(AIMessage(content=response.content))

    if len(messages1) >= 8:
      messages1 = messages1[-8:]

    history[-1][1] = ""
    for character in response.content:
        history[-1][1] += character
        time.sleep(0.0025)
        yield history

def Web_Search(history):
    global messages2

    message=history[-1][0]

    similar_docs = db.similarity_search(message, k=3)

    if similar_docs:
        source_knowledge = "\n".join([x.page_content for x in similar_docs])
    else:
        source_knowledge = ""

    augmented_prompt = f"""
    You are an AI designed to help understand and extract information from provided Search Content. Based on the user's Query, you may need to summarize the text, answer specific questions, or provide guidance.
    Query: {message}
    Search Content:
    {source_knowledge}
    
    #If the query is not related to specific Search Content, engage in general conversation or provide relevant information from other sources.
    """

    msg=HumanMessage(content=augmented_prompt)
    messages2.append(msg)
    response = chat_model.invoke(messages2)
    messages2.append(AIMessage(content=response.content))

    if len(messages2) >= 8:
      messages2 = messages2[-8:]

    history[-1][1] = ""
    for character in response.content:
        history[-1][1] += character
        time.sleep(0.0025)
        yield history

def Chart_Generator(history):
    global messages3

    message = history[-1][0]
    if '#chart' in message:
        message = message.split('#chart', 1)[1].strip()
        chart_url = f"https://quickchart.io/natural/{message}"
        response = requests.get(chart_url)

        if response.status_code == 200:
            image_html = f'<img src="{chart_url}" alt="Generated Chart" style="display: block; margin: auto; max-width: 100%; max-height: 100%;">'
            message_with_description = f"Describe and analyse the content of this chart: {chart_url}"
    
            prompt = HumanMessage(content=message_with_description)
            messages3.append(prompt)
    
            response = chat_model.invoke(messages3)
            messages3.append(AIMessage(content=response.content))
    
            if len(messages3) >= 8:
                messages3 = messages3[-8:]
    
            combined_content = f'{image_html}<br>{response.content}'
        else:
            response_text = "Can't generate this image. Please provide valid chart details."
            combined_content = response_text
    else:
        prompt = HumanMessage(content=message)
        messages3.append(prompt)
    
        response = chat_model.invoke(messages3)
        messages3.append(AIMessage(content=response.content))
    
        if len(messages3) >= 8:
            messages3 = messages3[-8:]

        combined_content=response.content
        
    history[-1][1] = ""
    for character in combined_content:
        history[-1][1] += character
        time.sleep(0.0025)
        yield history

def Link_Scratch(history):
    global messages4

    combined_message = history[-1][0]

    link = ""
    user_message = ""
    if "\n" in combined_message:
        link, user_message = combined_message.split("\n", 1)
        link = link.strip()
        user_message = user_message.strip()

    result = read_data(link)

    if result in ["Unsupported type or format.", "Please provide a valid webpage link",
                  "Invalid YouTube URL. Please provide a valid YouTube link.",
                  "Please choose a YouTube video with available English or Arabic transcripts.",
                  "Invalid YouTube video URL. Please provide a valid YouTube video link."]:
        response_message = result
    else:
        content_data = normalize_text(result)
        if not content_data:
            response_message = "The provided link is empty or does not contain any meaningful words."
        else:
            augmented_prompt = f"""
            You are an AI designed to help understand and extract information from provided Link Content. Based on the user's Query, you may need to summarize the text, answer specific questions, or provide guidance.
            Query: {user_message}
            Link Content:
            {content_data}
            
            #If the query is not related to specific Link Content, engage in general conversation or provide relevant information from other sources.
            """
            message = HumanMessage(content=augmented_prompt)
            messages4.append(message)
            response = chat_model.invoke(messages4)
            messages4.append(AIMessage(content=response.content))

            if len(messages4) >= 1:
                messages4 = messages4[-1:]

            response_message = response.content

    history[-1][1] = ""
    for character in response_message:
        history[-1][1] += character
        time.sleep(0.0025)
        yield history

def insert_line_breaks(text, every=8):
    return '\n'.join(text[i:i+every] for i in range(0, len(text), every))

def display_file_name(file):
    supported_extensions = ['.csv', '.txt', '.pdf', '.docx', '.pptx', '.xlsx', '.json', '.html', '.xml']
    file_extension = os.path.splitext(file.name)[1]
    if file_extension.lower() in supported_extensions:
      file_name = os.path.basename(file.name)
      file_name_with_breaks = insert_line_breaks(file_name)
      icon_url = "https://img.icons8.com/ios-filled/50/0000FF/file.png"
      return f"<div style='display: flex; align-items: center;'><img src='{icon_url}' alt='file-icon' style='width: 20px; height: 20px; margin-right: 5px;'><b style='color:blue;'>{file_name_with_breaks}</b></div>"
    else:
      raise gr.Error("( Supported File Types Only : PDF , CSV , TXT , DOCX , PPTX , XLSX , JSON , HTML , XML )")

def File_Interact(history,filepath):
    global messages5

    combined_message = history[-1][0]
    
    link = ""
    user_message = ""
    if "\n" in combined_message:
      link, user_message = combined_message.split("\n", 1)
      user_message = user_message.strip()

    result = read_data(filepath)

    if result == "Unsupported type or format.":
        response_message = result
    else:
        content_data = normalize_text(result)
        if not content_data:
            response_message = "The file is empty or does not contain any meaningful words."
        else:
            augmented_prompt = f"""
            You are an AI designed to help understand and extract information from provided File Content. Based on the user's Query, you may need to summarize the text, answer specific questions, or provide guidance.
            Query: {user_message}
            File Content:
            {content_data}
            
            #If the query is not related to specific File Content, engage in general conversation or provide relevant information from other sources.
            """
            message = HumanMessage(content=augmented_prompt)
            messages5.append(message)
            response = chat_model.invoke(messages5)
            messages5.append(AIMessage(content=response.content))

            if len(messages5) >= 1:
                messages5 = messages5[-1:]

            response_message = response.content

    history[-1][1] = ""
    for character in response_message:
        history[-1][1] += character
        time.sleep(0.0025)
        yield history

with gr.Blocks(theme=gr.themes.Soft()) as demo:
  with gr.Row():
    gr.Markdown("""<span style='font-weight: bold; color: blue; font-size: large;'>Choose Your Mode</span>""")
    gr.Markdown("""<div style='margin-left: -120px;'><span style='font-weight: bold; color: blue; font-size: xx-large;'>IT ASSISTANT</span></div>""")

  with gr.Tab("Chat-Message"):
    chatbot = gr.Chatbot(
          [],
          elem_id="chatbot",
          bubble_full_width=False,
          height=500,
          placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Feel Free To Ask Me Anything Or Start A Conversation On Any Topic...</span>"
      )
    with gr.Row():
      msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
      submit = gr.Button("➡️Send", scale=1)

    clear = gr.ClearButton([msg, chatbot])

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chat_Message, chatbot, chatbot)
    submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chat_Message, chatbot, chatbot)
    chatbot.like(print_like_dislike, None, None)

  with gr.Tab("Web-Search"):
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        height=500,
        placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Demand What You Seek, And I'll Search The Web For The Most Relevant Information...</span>"
    )
    with gr.Row():
      msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
      submit = gr.Button("➡️Send", scale=1)

    clear = gr.ClearButton([msg, chatbot])

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Web_Search, chatbot, chatbot)
    submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Web_Search, chatbot, chatbot)
    chatbot.like(print_like_dislike, None, None)

  with gr.Tab("Chart-Generator"):
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        height=500,
        placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Request Any Chart Or Graph By Giving The Data Or A Description, And I'll Create It...</span>"
    )

    with gr.Row():
      msg = gr.Textbox(show_label=False, placeholder="To generate a chart: type #chart [your chart description ]. To discuss the chart: type your message directly...", scale=10, container=False)
      submit = gr.Button("➡️Send", scale=1)

    clear = gr.ClearButton([msg, chatbot])

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chart_Generator, chatbot, chatbot)
    submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chart_Generator, chatbot, chatbot)
    chatbot.like(print_like_dislike, None, None)

  with gr.Tab("Link-Scratch"):
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        height=500,
        placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Provide A Link Of Web page Or YouTube Video And Inquire About Its Details...</span>"
    )

    with gr.Row():
        msg1 = gr.Textbox(show_label=False, placeholder="Paste your link...", scale=4, container=False)
        msg2 = gr.Textbox(show_label=False, placeholder="Type a message...", scale=7, container=False)
        submit = gr.Button("➡️Send", scale=1)

    clear = gr.ClearButton([msg2, chatbot, msg1])

    msg1.submit(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
    msg2.submit(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
    submit.click(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
    chatbot.like(print_like_dislike, None, None)

  with gr.Tab("File-Interact"):
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        height=500,
        placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Upload A File And Explore Questions Related To Its Content...</span><br>( Supported File Types Only : PDF , CSV , TXT , DOCX , PPTX , XLSX , JSON , HTML , XML )"
    )

    with gr.Column():
        with gr.Row():
            filepath = gr.UploadButton("Upload a file", file_count="single", scale=1)
            msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=7, container=False)
            submit = gr.Button("➡️Send", scale=1)
        with gr.Row():
            file_output = gr.HTML("<div style='height: 20px; width: 30px;'></div>")
            clear = gr.ClearButton([msg, filepath, chatbot,file_output],scale=6)

    filepath.upload(display_file_name, inputs=filepath, outputs=file_output)

    msg.submit(user3, [msg, chatbot, file_output], [msg, chatbot, file_output], queue=True).then(File_Interact, [chatbot, filepath],chatbot)
    submit.click(user3, [msg, chatbot, file_output], [msg, chatbot, file_output], queue=True).then(File_Interact, [chatbot, filepath],chatbot)
    chatbot.like(print_like_dislike, None, None)

demo.queue(max_size=10, default_concurrency_limit=4)
demo.launch(max_file_size="5mb",show_api=False,max_threads=50)